Военно-политические аспекты пилотируемой космонавтики. История пилотируемой космонавтики Название орбитальной станции

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ИНСТИТУТ

(ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

РЕФЕРАТ ПО ИСТОРИИ

«ИСТОРИЯ ПИЛОТИРУЕМОЙ КОСМОНАВТИКИ»

ВЫПОЛНИЛ: Мильяненко Григорий

ГРУППА: 06 – 104

ПРОВЕРИЛ: ____________________

ВСТУПЛЕНИЕ.....................................................................................................................................................3

КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ РАКЕТНОЙ ТЕХНИКИ..........................................................................3

ПИОНЕРЫ ТЕОРЕТИЧЕСКОЙ КОСМОНАВТИКИ....................................................................................3

РАЗВИТИЕ РАКЕТНОЙ ТЕХНИКИ В ДОВОЕННЫЙ ПЕРИОД.................................................................3

РАЗВИТИЕ РАКЕНТОЙ ТЕХНИКИ В ПЕРИОД ВТОРОЙ МИРОВОЙ ВОЙНЫ........................................5

РАЗВИТИЕ РАКЕТНОЙ ТЕХНИКИ В ПОСЛЕВОЕННЫЙ ПЕРИОД.........................................................7

НАЧАЛЬНЫЙ ПЕРИОД РАЗВИТИЯ КОСМОНАВТИКИ............................................................................8

ПИОНЕРЫ ОСВОЕНИЯ КОСМОСА...............................................................................................................8

ХРОНОЛОГИЯ ПИЛОТИРУЕМЫХ КОСМИЧЕСКИЙ ПОЛЕТОВ.............................................................8

ЗАКЛЮЧЕНИЕ..................................................................................................................................................29

«... но в погоне за светом и знаниями человечество сначала робко выглянет за атмосферу, а потом завоют себе все околосолнечное пространство».

К. Э. Циолковский.

Человека всегда манило небо и... звезды. С тех самых пор как он стал осознавать себя «Homo Sapiens», он всегда хотел летать в небе как птица, а вглядываясь в темные глубины космоса, где таинственно мерцали звезды, ему не давали покоя вопросы: одинок ли он во Вселенной? Есть ли братья по разуму и какие они?

Впервые увидеть землю с высоты птичьего полета человек смог только с изобретеньем воздушного шара – 1783 г., а с изобретением самолета такая возможность появилась практически у всего человечества.

С таинство мерцающими звездами дело обстояло посложней – уж больно далеки были самые звезды. Даже свет от них достигает Земли, пробираясь сквозь глубины Вселенной не один десяток лет. И приблизится к ним можно было разве что оседлав мечту. Но человек не только мечтал, он еще и дерзал, творил, приближая осуществление своей мечты.

С изобретением пороха был открыт принцип реактивного движения – пороховая ракета. Но понадобилось еще почти два тысячелетия, чтобы эта маленькая пороховая игрушка, пройдя путь через боевые реактивные снаряды и межконтинентальные носители ядерных боеголовок, превратилась в носителя космических кораблей. Но обо всем по порядку.

На пороховую ракету обратили свое внимание еще полководцы древности и начали использовать ее в качестве зажигательного средства при осаде и штурме крепостей. Позже они решили использовать ее для доставки к цели разрушительных зарядов. В Российской армии первое упоминание об использовании боевых ракет относится к середине XIX столетия – период русско-турецкой войны. Однако из-за отсутствия надежных способов стабилизации и управления полетом ракеты на траектории и, как следствие, очень большого рассеивания, широкого распространения «ракетная артиллерия» не получила. Как раз в это время была реализована идея нарезного ствола, что намного увеличило дальность и точность стрельбы, а новый, далеко несовершенный и капризный реактивный снаряд не сулил артиллеристам никаких выгод.

Но именно в это самое время – конец XIX – начало XX столетий, бурно развивающееся воздухоплавание (кроме воздушных шаров в небе появились первые дирижабли) и только что нарождающаяся авиация дали толчок всем мечтателям в мире, воскресив прекрасную мечту о полетах к другим мирам. В их воображении к соседним планетам уже мчались эскадрильи космических кораблей, готовые или помочь братьям по разуму подняться на более высокую ступень развития, или самим аккумульнуть знаний и технологий. Им казалось, что небо человеком уже освоено, «еще немного, еще чуть-чуть» – и вот он – Марс, мечта всех романтиков космоса.

Повсеместно начали организовываться всевозможные секции и общества, ставившие своей целью полеты на Луну и к Марсу, читались лекции, проводились диспуты, издавалась масса околонаучных и просто фантастических брошюр. Но трезво мыслящие мечтатели (а среди них были и такие) прекрасно понимали, что ни воздушный шар, ни дирижабль, ни самолет с его маломощным поршневым двигателем для достижения других планет не пригодны. И поэтому взоры как мечтателей, так и реально мыслящих практиков космоплавания практически одновременно пали на ракету.

В конце XIX столетия (1881 год) русский революционер-народоволец Николай Кибальчич, приговоренный к смертной казни за убийство царя Александра II, за несколько дней до казни сделал первые наброски и расчеты (очевидно, впервые в России) ракетного летательного аппарата.

Примерно в это же время (конец XIX столетия) калужский преподаватель гимназии Константин Эдуардович Циолковский, страстный мечтатель и ученый-самоучка, впервые теоретически обосновывает принцип реактивного движения. В 1903 году издается его труд «Исследования мировых пространств реактивными приборами». Спустя некоторое время, а именно в 1929 году, издается его вторая книга по основам ракетоплавания «Космические ракетные поезда». В «Трудах о космической ракете» он подводит черту под своими работами в области космоплавания. В них он убедительно доказал, что единственно возможным двигателем для полета в пустоте (космическом пространстве) является ракета и теоретически обосновал возможность достижения ближайших к Земле небесных тел с помощью «ракетных поездов» т.е. многоступенчатых ракет-носителей, отбрасывающих свои отработавшие ступени. Этим достигалось снижение остаточного веса ракеты-носителя и наращивание за счет этого ее скорости.

За этот неоценимый вклад в теорию космоплавания калужский учитель К.Э. Циолковский обрел всемирную известность и по праву считается основоположником теоретической космонавтики.

Примерно в это же время (первое десятилетие XX столетия) на космическом небосводе России вспыхнула еще одна яркая звезда – Фридрих Артурович Цандер.

Слушая рассказы отца о черных безднах, разделяющих звезды, о множестве иных миров, которые наверняка есть, пусть очень далеко, но есть, Фридрих ни о чем другом думать уже не мог. У одних людей жизнь заслоняет собой все эти мысли детства, а у Цандера мысли эти заслонили всю его жизнь.

Он окончил Политехнический институт в Риге, учился в Германии и снова в Риге. В 1915 году война переселила его в Москву. Теперь он занимается только полетом в космос. Нет, конечно, помимо этого он работает на авиазаводе «Мотор», что-то делает, считает, чертит, но все мысли его в космосе. Ослепленный своими мечтами, он уверен, что убедит других, многих, всех в острой необходимости межпланетного полета. Он открывает перед людьми фантастическую картину, однажды открывшуюся ему, мальчику:

«Кто, устремляя в ясную осеннюю ночь свои взоры к небу, при виде сверкающих на нем звезд не думал о том, что там, на далеких планетах, может быть, живут подобные нам разумные существа, опередившие нас в культуре на многие тысячи лет. Какие несметные культурные ценности могли бы быть доставлены на земной шар земной науке, если бы удалось туда перелететь человеку, и какую минимальную затрату надо произвести на такое великое дело в сравнении с тем, что бесполезно тратится человеком».

Один крупный инженер вспоминает: «Он рассказывал о межпланетных полетах так, как будто у него в кармане был ключ от ворот космодрома». Да ему нельзя не верить. И люди верят ему. Пока он говорит. Но он замолкает и тогда многие начинают думать, что, наверное, он все-таки сумасшедший.

А он голодал когда делал расчеты крылатой машины, которая смогла бы унести человека за пределы атмосферы. Работа эта так поглотила его, что он ушел с завода и 13 месяцев занимался своим межпланетным кораблем. Совершенно не было денег, он попал в большую нужду, но продолжал заниматься своими расчетами. Любые дела и разговоры, не связанные с межпланетными путешествиями, его не интересовали. Он считал Циолковского гением, мог сутками сидеть за столом со своей полуметровой логарифмической линейкой и утверждать при этом, что нисколько не устал. В угаре неистовой работы он вдруг стискивал на затылке пальцы и, не замечая никого вокруг, повторял горячо и громко:

– На Марс! На Марс! Вперед, на Марс!

Как легко было ошибиться в нем, приняв за фанатика – не более, за одержимого изобретателя мифического аппарата, воспаленный мозг которого не знал покоя.

Но он не был таким чудаком. Много лет спустя член-корреспондент АН СССР И.Ф. Образцов так скажет о Фридрихе Артуровиче:

«Особенностью творческого метода Цандера была глубокая математическая разработка каждой поставленной перед собой проблемы. Он не просто теоретически глубоко разрабатывал рассматриваемые вопросы, а с присущей ему ясностью изложения старался дать свое толкование волновавшей его проблемы, найти пути к ее практической реализации». Прежде всего Цандер был инженером, и не просто инженером. «Первый звездный инженер, мозг и золото космоплавания», - так отозвался о нем Циолковский.

А в это самое время будущий выпускник МВТУ им. Баумана Сергей Павлович Королев, юноша, страстно влюбленный в небо, конструировал и строил планера, и сам на них летал. Нет, это был еще не тот Королев, конструктов ракетно-космических систем, о котором мир узнает ровно через полвека. На этом отрезке жизненного пути молодого инженера и пилота манила стратосфера и способы ее достижения. Выбор, как и следовало ожидать, тоже остановился на ракете. А знакомство с трудами Циолковского и лично с Цандером окончательно определило направление дальнейших поисков конструктора Королева – ракетоплан. Знакомство с Тихонравовым и Победоносцевым, а также с газодинамической лабораторией (ГДЛ) в Ленинграде подтолкнуло его к созданию аналогичного центра в Москве, оформившегося в группу изучения реактивного движения (ГИРД) при Осоавиахиме 1930 году. Начальником ГИРДа был назначен Королев, а ее лидером, безусловно, был Цандер. А 17 августа 1933 года на полигоне в Нахабино стартовала первая советская ракета – знаменитая «девятка». Сохранился даже «Акт о полете ракеты ГИРД Р–1», – так называли «девятку», из которого следовало, что полет ракеты продолжался 18 секунд и она достигла высоты 400 метров. Глубокой осенью, когда уже выпал снег, стартовала вторая ракета ГИРД-X – полностью жидкостная, с двумя – спиртовым и кислородным – баками, задуманная Цандером и осуществленная его соратниками по первой бригаде. Эти две ракеты стали действительно историческими: с них начинается летопись советских жидкостных ракет.

«ИСТОРИЯПИЛОТИРУЕМОЙ КОСМОНАВТИКИ»

«…но в погоне за светом и знаниями человечество сначала робковыглянет за атмосферу, а потом завоют себе все околосолнечное пространство».

К. Э. Циолковский.

Человека всегда манило небо и … звезды. С тех самыхпор как он стал осознавать себя «Homo Sapiens », он всегда хотел летатьв небе как птица, а вглядываясь в темные глубины космоса, где таинственномерцали звезды, ему не давали покоя вопросы: одинок ли он во Вселенной? Есть либратья по разуму и какие они?

Впервые увидеть землю с высоты птичьего полета человексмог только с изобретеньем воздушного шара — 1783 г., а с изобретением самолета такая возможность появилась практически у всего человечества.

С таинство мерцающими звездами дело обстояло посложней- уж больно далеки были самые звезды. Даже свет от них достигает Земли, пробираясь сквозь глубины Вселенной не один десяток лет. И приблизится к нимможно было разве что оседлав мечту. Но человек не только мечтал, он еще идерзал, творил, приближая осуществление своей мечты.

С изобретением пороха был открыт принцип реактивногодвижения — пороховая ракета. Но понадобилось еще почти два тысячелетия, чтобыэта маленькая пороховая игрушка, пройдя путь через боевые реактивные снаряды имежконтинентальные носители ядерных боеголовок, превратилась в носителя космическихкораблей. Но обо всем по порядку.

На пороховую ракету обратили свое внимание ещеполководцы древности и начали использовать ее в качестве зажигательногосредства при осаде и штурме крепостей. Позже они решили использовать ее длядоставки к цели разрушительных зарядов. В Российской армии первое упоминание обиспользовании боевых ракет относится к середине XIX столетия -период русско-турецкой войны. Однако из-за отсутствия надежных способовстабилизации и управления полетом ракеты на траектории и, как следствие, оченьбольшого рассеивания, широкого распространения «ракетная артиллерия» неполучила. Как раз в это время была реализована идея нарезного ствола, чтонамного увеличило дальность и точность стрельбы, а новый, далеко несовершенныйи капризный реактивный снаряд не сулил артиллеристам никаких выгод.

Но именно в это самое время — конец XIX -начало XX столетий, бурно развивающееся воздухоплавание (кромевоздушных шаров в небе появились первые дирижабли) и только что нарождающаясяавиация дали толчок всем мечтателям в мире, воскресив прекрасную мечту ополетах к другим мирам. В их воображении к соседним планетам уже мчалисьэскадрильи космических кораблей, готовые или помочь братьям по разуму поднятьсяна более высокую ступень развития, или самим аккумульнуть знаний и технологий. Им казалось, что небо человеком уже освоено, «еще немного, еще чуть-чуть» — ивот он — Марс, мечта всех романтиков космоса.

Повсеместно начали организовываться всевозможныесекции и общества, ставившие своей целью полеты на Луну и к Марсу, читалисьлекции, проводились диспуты, издавалась масса околонаучных и простофантастических брошюр. Но трезво мыслящие мечтатели (а среди них были и такие) прекрасно понимали, что ни воздушный шар, ни дирижабль, ни самолет с его маломощнымпоршневым двигателем для достижения других планет не пригодны. И поэтому взорыкак мечтателей, так и реально мыслящих практиков космоплавания практическиодновременно пали на ракету.

В конце XIX столетия (1881 год) русский революционер-народоволецНиколай Кибальчич, приговоренный к смертной казни за убийство царя Александра II, за несколько дней до казни сделал первые наброски и расчеты (очевидно, впервыев России) ракетного летательного аппарата.

Примерно в это же время (конец XIXстолетия) калужский преподаватель гимназии Константин Эдуардович Циолковский, страстный мечтатель и ученый-самоучка, впервые теоретически обосновываетпринцип реактивного движения. В 1903 году издается его труд «Исследованиямировых пространств реактивными приборами». Спустя некоторое время, а именно в1929 году, издается его вторая книга по основам ракетоплавания «Космическиеракетные поезда». В «Трудах о космической ракете» он подводит черту под своимиработами в области космоплавания. В них он убедительно доказал, что единственновозможным двигателем для полета в пустоте (космическом пространстве) являетсяракета и теоретически обосновал возможность достижения ближайших к Земленебесных тел с помощью «ракетных поездов» т. е. многоступенчатыхракет-носителей, отбрасывающих свои отработавшие ступени. Этим достигалосьснижение остаточного веса ракеты-носителя и наращивание за счет этого еескорости.

За этот неоценимый вклад в теорию космоплаваниякалужский учитель К.Э. Циолковский обрел всемирную известность и по правусчитается основоположником теоретической космонавтики.

Примерно в это же время (первое десятилетие XXстолетия) на космическом небосводе России вспыхнула еще одна яркая звезда -Фридрих Артурович Цандер.

Слушая рассказы отца о черных безднах, разделяющихзвезды, о множестве иных миров, которые наверняка есть, пусть очень далеко, ноесть, Фридрих ни о чем другом думать уже не мог. У одних людей жизнь заслоняетсобой все эти мысли детства, а у Цандера мысли эти заслонили всю его жизнь.

Он окончил Политехнический институт в Риге, учился вГермании и снова в Риге. В 1915 году война переселила его в Москву. Теперь онзанимается только полетом в космос. Нет, конечно, помимо этого он работает наавиазаводе «Мотор», что-то делает, считает, чертит, но все мысли его в космосе. Ослепленный своими мечтами, он уверен, что убедит других, многих, всех в остройнеобходимости межпланетного полета. Он открывает перед людьми фантастическуюкартину, однажды открывшуюся ему, мальчику:

«Кто, устремляя в ясную осеннюю ночь свои взоры кнебу, при виде сверкающих на нем звезд не думал о том, что там, на далекихпланетах, может быть, живут подобные нам разумные существа, опередившие нас вкультуре на многие тысячи лет. Какие несметные культурные ценности могли быбыть доставлены на земной шар земной науке, если бы удалось туда перелететьчеловеку, и какую минимальную затрату надо произвести на такое великое дело всравнении с тем, что бесполезно тратится человеком».

Один крупный инженер вспоминает: «Он рассказывал омежпланетных полетах так, как будто у него в кармане был ключ от вороткосмодрома». Да ему нельзя не верить. И люди верят ему. Пока он говорит. Но онзамолкает и тогда многие начинают думать, что, наверное, он все-такисумасшедший.

А он голодал когда делал расчеты крылатой машины, которая смогла бы унести человека за пределы атмосферы. Работа эта такпоглотила его, что он ушел с завода и 13 месяцев занимался своим межпланетнымкораблем. Совершенно не было денег, он попал в большую нужду, но продолжалзаниматься своими расчетами. Любые дела и разговоры, не связанные смежпланетными путешествиями, его не интересовали. Он считал Циолковскогогением, мог сутками сидеть за столом со своей полуметровой логарифмическойлинейкой и утверждать при этом, что нисколько не устал. В угаре неистовойработы он вдруг стискивал на затылке пальцы и, не замечая никого вокруг, повторял горячо и громко:

- На Марс! На Марс! Вперед, на Марс!

Как легко было ошибиться в нем, приняв за фанатика- не более, за одержимого изобретателя мифического аппарата, воспаленный мозгкоторого не знал покоя.

Но он не был таким чудаком. Много лет спустячлен-корреспондент АН СССР И.Ф. Образцов так скажет о Фридрихе Артуровиче:

«Особенностью творческого метода Цандера былаглубокая математическая разработка каждой поставленной перед собой проблемы. Онне просто теоретически глубоко разрабатывал рассматриваемые вопросы, а сприсущей ему ясностью изложения старался дать свое толкование волновавшей егопроблемы, найти пути к ее практической реализации». Прежде всего Цандер былинженером, и не просто инженером. «Первый звездный инженер, мозг и золотокосмоплавания», — так отозвался о нем Циолковский.

А в это самое время будущий выпускник МВТУ им. БауманаСергей Павлович Королев, юноша, страстно влюбленный в небо, конструировал истроил планера, и сам на них летал. Нет, это был еще не тот Королев, конструктов ракетно-космических систем, о котором мир узнает ровно черезполвека. На этом отрезке жизненного пути молодого инженера и пилота маниластратосфера и способы ее достижения. Выбор, как и следовало ожидать, тожеостановился на ракете. А знакомство с трудами Циолковского и лично с Цандеромокончательно определило направление дальнейших поисков конструктора Королева -ракетоплан. Знакомство с Тихонравовым и Победоносцевым, а также сгазодинамической лабораторией (ГДЛ) в Ленинграде подтолкнуло его к созданиюаналогичного центра в Москве, оформившегося в группу изучения реактивногодвижения (ГИРД) при Осоавиахиме 1930 году. Начальником ГИРДа был назначенКоролев, а ее лидером, безусловно, был Цандер. А 17 августа 1933 года наполигоне в Нахабино стартовала первая советская ракета — знаменитая «девятка».Сохранился даже «Акт о полете ракеты ГИРД Р-1», — так называли «девятку», изкоторого следовало, что полет ракеты продолжался 18 секунд и она достиглавысоты 400 метров. Глубокой осенью, когда уже выпал снег, стартовала втораяракета ГИРД-X — полностью жидкостная, с двумя — спиртовым икислородным — баками, задуманная Цандером и осуществленная его соратниками попервой бригаде. Эти две ракеты стали действительно историческими: с нихначинается летопись советских жидкостных ракет.

В 1934 году по инициативе заместителя наркома обороныМ. Н. Тухачевского, человека передового и всячески поддерживающего ракетчиков, две родственные организации, занимающиеся изучением реактивного движения, Ленинградская ГДЛ и Московская ГИРД, были взяты под опеку наркомата обороны иобъединены в РНИИ — ракетный научно-исследовательский институт. Делу изученияреактивного движения был придан новый статус, — из организацииинициативно-общественной она стала организацией государственной важности иначала работать по планам военных заказчиков. А планы у военных были весьмаконкретные и очень далекие от полетов в космос и, тем более, на Марс. Имтребовалось высокоэффективная (обладающая большой огневой мощью) и с приемлемойточностью стрельбы «реактивная артиллерия», или по современному определению -реактивные снаряды класса «земля — земля» и «воздух — земля» (для стрельбы изсамолетов по земле).

Поставленные перед ним задачи РНИИ успешно разрешил: уже в боях на Халхин-Голе на самолетах И-153 «Чайка» и И-16 весьма успешноприменялись реактивные снаряды (ракеты класса «воздух — земля»), а к началуВеликой Отечественной Войны были созданы многоствольные реактивные установки наавтомобильной платформе — знаменитые гвардейские реактивные минометы, ласковоназываемые фронтовиками «Катюша», сыгравшие большую роль в достижении победынад врагом. Следует отметить, что попытки немцев создать нечто подобное, успехом не увенчались.

Наряду с разработкой боевых реактивных снарядов, отделинститута, возглавляемый конструктором Королевым, занимался разработкойкрылатых ракет (проекты 212, 216 и 217), но начавшаяся в 1937 году волнарепрессий докатилась и до РНИИ. В 1938 году было репрессировано практически всеруководство института и ведущие инженеры-конструкторы, в том числе и будущийглавный конструктор ракетно-космических систем.

А теперь оторвемся на минутку от дел Российских ипосмотрим, как же развивалась идея космоплавания в других странах?

С Соединенных Штатах Америки Роберт Годдард, человектрудного, сложного характера, предпочитал работать скрытно, в узком кругудоверенных людей, слепо ему подчинявшихся. По словам одного из американскихколлег, «Годдард считал ракеты своим частным заповедником, и тех, кто так жеработал над этим вопросом рассматривал как браконьеров… Такое его отношениепривело к тому, что он отказался от научной традиции сообщать о своихрезультатах через научные журналы…». Другой американец, историк космонавтики, пишет о нем: «Нельзя установить прямую связь между Годдардом и современнойракетной техникой. Он на том ответвлении, которое отмерло».

Из доклада американского ученого Ф. Дж. Малина: «Мыпросмотрели изданные работы первого поколения основоположников теориикосмических полетов: К.Э. Циолковского (1857 — 1937), Р. Годдарда (1882 -1945), Р. Эсно-Пельтри (1881 — 1957) и Г. Оберта. В научных кругах этиматериалы относили в основном к научно-фантастической литературе прежде всегопотому, что разрыв между возможностями существовавших экспериментальныхракетных двигателей и фактическими требованиями к ракетному двигателю длякосмического полета был фантастически велик. Отрицательное отношениераспространялось на само ракетное движение…».

Италия: «Должностные лица военно-воздушных силпроявляли очень мало интереса к будущему ракетных двигателей… Интересопекавшей нас итальянской администрации к ракетной технике находился на точкезамерзания» — это слова Л. Крокко, сына генерала Г. Крокко, крупнейшегоитальянского ракетного специалиста.

Франция: «Известный специалист по пороховым ракетам Л. Домблан говорил: «Этим делом я занялся по собственной инициативе и до концаработал сам, без помощи квалифицированных специалистов…».

Германия: «Добиться, чтобы авторитетные ученыевыслушали меня и подумали о моих предложениях, оказалось невозможно, -вспоминал Герман Оберт. — Единственный шанс заставить их заняться этим состоялв привлечении к моим идеям общественного интереса».

Но в германии был и другой инженер, грезивший ракетами- Вернер фон Браун. Уже в 1929 году ему удалось создать лабораторию и привлечьзаинтересованных и увлеченных ракетами специалистов. А с приходом к властинацистов в 1933 году работа этой лаборатории была взята под опеку военных истрого засекречена. Кроме того, в ряде других лабораторий и КБ проводиласьобширные работы по боевому применению реактивных снарядов. Наряду с эти в КБавиационного конструктора Вилли Мессершмита с широким размахом велись работы посозданию самолета с реактивным двигателем.

Триумф нашей «Катюши», как уже было отмечено, побуждалнемецких конструкторов создать аналогичные образцы фронтовых реактивныхустановок. Несмотря на тщательно охраняемый секрет советских гвардейскихреактивных минометов (даже за утерю одной доски от снарядного ящика виновномугрозил расстрел) немцам, как отмечает историк ракетной техники Герман Назаров, удалось «заполучить снаряд нашей «Катюши» еще в 1939 году, когда еще и имени унее этого не было. Немцы предприняли самые решительные и срочные меры, чтобысоздать подобное оружие и бросили на его разработку десятки фирм. К концу войнысуществовало множество опытных образцов, ни один из которых не удовлетворялтребованиям военных. С 1942 года немцы применяли на Восточном фронте шестиствольныеминометы, стреляющие реактивными снарядами «Небельверфер» и «Вурфгерет».Следует отметить, что, по сравнению со знаменитой «Катюшей», эффективность ихбыла невысока, широкого применения на фронте они не получили, а за издаваемыйпри стрельбе ужасный визг у фронтовиков они получили прозвище «Скрипач».

Немцами была создана также многоступенчатая 11метровая ракета «Рейнботе», которой они обстреливали Антверпен, былиэкспериментальные зенитные ракеты: маленький «Тайфун», трехметровые"Шметтерлинг" и «Энциан», шестиметровая «Рейнтохтер» и без малоговосьмиметровая «Вассерфаль». Из всех образцов относительно совершеннымоказался, пожалуй, только «Фаустпатрон» — реактивный гранатомет, которыйэффективно применялся в городских боях, когда несчастные мальчишки из"гитлерюгенд" в упор палили из них по нашим танкам. Но утверждать, что немецкиеракетчики достигли успехов только в создании реактивного гранатомета, — этозначит не сказать о них самого главного. Главный успех немецких ракетчиковсостоял именно в том, что они создали, испытали и поставили на поток крылатуюракету «Фау-1» с прямоточным пульсирующим реактивным двигателем ибаллистическую ракету «Фау-2». Первые самолеты — снаряды «Фау-1» началиобстреливать Лондон и другие города Англии в первой половине 1943 года. Но ихпрямоточный пульсирующий двигатель при полете издавал сильный треск, из-за чегокрылатая ракета была прозвана «трещоткой». Кроме того, она обладалаотносительно невысокой скоростью полета (до 600 км/час), поэтому легкоопознавалась средствами ПВО и довольно успешно перехватываласьсамолетами-истребителями.

Указанных недостатков уже не имел другой боевойреактивный снаряд конструкции Вернера фон Брауна — баллистическая ракета А-4,названная немцами «Vergeltungs Waffe » (оружие возмездия), сокращенно «Фау-2». Стартовый вес этой ракеты составлял 12,5 тонны, тягадвигателя — 25 тонн, высота полета — 86 километров, дальность — 250 километров.

7 сентября 1944 года из района Гааги была запущенапервая баллистическая ракета «Фау-2» по Парижу. Лондон начали обстреливать наследующий день. Когда в 18 часов 43 минуты 8 сентября 1944 года в районеЧизвик раздался сильный взрыв, подумали, что взорвалась газовая магистраль: ведь никакой воздушной тревоги не было. Взрывы повторялись и стало ясно, чтогазовые магистрали ни при чем. Около одной из воронок офицер ПВО поднял кусокпатрубка, который словно прилип к руке: метал был заморожен. Так стало ясно, что в ракете, очевидно, применяется жидкий кислород. Из 1402 запущенных «Фау-2"1054 упали на Британию, из них 517 — попали в Лондон, принеся много жертв иразрушений. 14 февраля 1945 года с седьмой площадки ракетного центра вПенемюнде взлетела последняя фашистская «Фау-2» — заводской номер 4299серийного производства «Миттельверке».

Да, следует признать, что немцы сделали большойрывок вперед в деле создания ракетных носителей большой мощности. Первымиоценили это англичане, так как первые подверглись обстрелу баллистическимиракетами. Поэтому неудивительно, что армейская разведка и секретные службысоюзников получили указания от своего руководства собирать все, имеющееотношение к ракетному оружию. А на завершающем этапе войны они начали настоящуюохоту за специалистами-ракетчиками.

В отличии от англичан, у нас ничего не было, кромедокладов разведки о стартах в Польше и радиоперехватов восторженных речейГеббельса, который утверждал, что новое оружие способно изменить весь ходвойны. Получены были также сведения, что немцы собираются применять «Фау-1» длябомбардировок Ленинграда. Подвешенные к бомбардировщикам «Хейнкель-111"самолеты-снаряды, пилотируемые летчиками-смертниками, собирались долететь доКуйбышева, Челябинска, Магнитогорска и других городов. Для мести несдавшемусяЛенинграду в Таллин морем были доставлены несколько „Фау-2“, шесть из которыхсекретным эшелоном были отправлены под Псков. Но до Пскова эшелон не дошел -его пустили под откос партизаны. В общем ни „Фау-1“, ни „Фау-2“ на Восточномфронте немцам применить не удалось, что не снизило, однако, интереса Ставки кракетному оружию противника. Едва войска маршала Конева приблизились к району"полигона Близна», как в НИИ-1 (бывший РНИИ) стали готовиться лететь в Польшу. А будущий главный конструктор ракетно-космических систем С. П. Королев, толькочто расконвоированный из туполевской «шарашки», занимался испытанием ракетныхускорителей для облегчения взлета бомбардировщиков Ту-2 и Пе-2 с полевыхаэродромов. Он уже кое-что слышал о ракетном оружии немцев, много анализировалполеты бомбардировщиков с ракетным ускорителем, уже не верит в жидкостныйракетоплан, но еще не верит и в большую ракету. Но сам факт реальносуществующей серийной ракеты, которая летает на дальность 250 километров, говорит ему о многом. «Фау-2» нравилась ему и раздражала его… Нравилась ираздражала! Ну, конечно же! Фау была машиной, обогнавшей свое время, и уже поэтому не могла не нравится ему. Но и не раздражать не могла, потому что своимфактом своего существования предопределяла выбор, который он должен былсделать: ракетоплан или большая ракета. Конечно, за последние 15 лет он многоепонял в ракетной технике, но неужели надо оставить ракетоплан? И ради чего?! Ради этой толстой немецкой штуковины, капризной и еще не умеющей хорошо летать? Но ведь уже сегодня она поднимается на высоту 178 километров, на которую неизвестно когда залетит ракетоплан, и залетит ли… Кроме всего прочего, баллистическая ракета — реальность, она уже летает и никого не надо убеждать, что ее можно сделать. А стратосферного самолета нет. Его нельзя увидеть. В чертежах те, кто решает, как правило, не разбираются. Значит, в ракетопланони могут только поверить. Но поверить — значит рискнуть. А кто захочетрисковать, если можно не рисковать?!

Вот эти думы делали Королева мрачным исосредоточенным. И было от чего помрачнеть: требовалась принципиальнаяперестройка всех планов жизни.

В первый набор наших охотников за трофеями он непопал — заканчивал программу испытаний и участвовал в подготовке самолета сускорителем к намечавшемуся в Тушино празднику — Дню Авиации. В Берлин он попаллишь в сентябре 1945 года.

К этому времени все крупнейшиеспециалисты-ракетчики немцев во главе с самим Вернером фон Брауном уже былиотловлены союзниками. К тому же все основные заводы по производству компонентовбаллистических ракет были захвачены американцами. К моменту передачи их асоветскую зону оккупации американцами было вывезено 300 товарных вагонов сракетами и их комплектующими. Из жалких остатков на подземных заводах послеамериканцев и в разбомбленном Пенемюнде Королеву едва удалось набрать полторадесятка разукомплектованных «Фау-2», которые специальным поездом былиотправлены в подмосковные Подлипки (нынешний город Королев). Там, на бывшемартиллерийском заводе, теперь переданном ракетчикам, к июлю 1947 года из них, после изготовления недостающих комплектующих, было собрано одиннадцать «Фау-2».Из Подлипок эти ракеты в великой тайне спецпоездом были доставлены на вновьсозданный полигон в низовьях Волги.

Первый старт баллистической ракеты в нашей странесостоялся 18 октября 1947 года в 10 часов 47 минут утра. Она «залезла» в небона 86 километров и начала валиться оттуда на землю по баллистической кривой. Воронка на месте ее падения диаметром около 20 метров и глубиной с деревенскую избу находилась в 274 километрах от старта. С 18 октября по 13 ноября 1947 года были отстрелены все одиннадцать ракет «Фау-2». Несмотря на то, чтотолько пять из одиннадцати ракет достигли цели, Королев, да и другиеспециалисты считали этот результат весьма обнадеживающим.

Прошло меньше года после того, как в КапЯре (полигон в низовьях Волги) отстреляли весь аленький запас трофейных «Фау-2», как туда уже была доставлена новенькая, «с иголочки», ее советская копия:"Р-1″. Первый пуск советской баллистической ракеты состоялся в октябре 1948 года. Как новейшее оружие, готовое прийти на смену ствольной артиллерии иавиации, эта ракета, конечно же, не годилась: малая дальность, малая мощностьбоезаряда и большое рассеивание. Но уже очень многие в руководстве, военном игражданском, начинали понимать, что ракеты — это весьма перспективное оружие, за ними будущее. Тем более, что в архивах Вернера фон Брауна были обнаруженычертежи еще более мощных многоступенчатых баллистических ракет А-9 и А-10,предназначавшиеся для бомбардировок Нью-Йорка.

Поэтому, запуская в серию несовершенную «Р-1», всепонимали, что это нужно для подготовки кадров конструкторов и проектантов, отработки технологий на производствах и взаимодействия со смежниками, подготовки многочисленной армии инженеров и рабочих высокой квалификации. Всеэто обстояло именно так и в дальнейшем с конвейеров советской промышленностисходили ракеты различного назначения, по образному выражению Н.С. Хрущева, «каксосиски из колбасного цеха».

Заглянем, на минутку, в хронологию «взросления"советских ракет:

1948 год — Р-1 — дальность 280 километров;

1949 год — Р-2 — дальность 600 километров;

1951 год — Р-3 — дальность 3000 километров (но ее Королев в серию не запустил, интуитивно почувствовал, что это не то);

1953 год — Р-5 — дальность 5000 километров;

1956 год — Р-5М — уже с ядерной боеголовкой;

1957 год — знаменитая Р-7 — межконтинентальная баллистическая.

О ракете Р-7 надо сказать особо. Ракета Р-7 -главный итог земных трудов Королева и начало его космических трудов. И спутник, и гагаринский корабль, и все прочие замечательные и оригинальные конструкцииСергея Павловича без ракеты Р-7 превращаются в дорогие, замысловатые ибессмысленные игрушки. «Семерка» — одно из чудес XX века — первично в истории космонавтики. Она могла бы просто забросить в космоспросто чугунную чушку, и все равно это было бы событие эпохальное.

Октябрь 1957 года — Р-7 выводит на орбиту первыйискусственный спутник Земли.

Сентябрь 1959 года — Р-7 впервые в историичеловечества донесла послание землян до Луны.

| | | | |
космонавтика история, космонавтика
Космона́втика (от греч. κόσμος - Вселенная и ναυτική - искусство мореплавания, кораблевождение) - теория и практика навигации за пределами атмосферы Земли для исследования космического пространства при помощи автоматических и пилотируемых космических аппаратов. Другими словами, это наука и технология космических полётов.

В русском языке этот термин был употреблён одним из пионеров советской ракетной техники Г. Э. Лангемаком, когда он переводил на русский язык монографию А. А. Штернфельда «Введение в космонавтику» («Initiation à la Cosmonautique»).

Основу ракетостроения заложили в своих трудах в начале XX века Константин Циолковский, Герман Оберт, Роберт Годдард и Рейнхольд Тилинг. Важным шагом стал запуск с космодрома Байконур первого искусственного спутника Земли в 1957 году СССР - Спутника-1.

Грандиозным свершением и отправной точкой развития пилотируемой космонавтики стал полёт советского космонавта Юрия Гагарина 12 апреля 1961 года. Другое выдающееся событие в области космонавтики - высадка человека на Луну состоялось 21 июля 1969 года. Американский астронавт Нил Армстронг сделал первый шаг по поверхности естественного спутника Земли со словами:«Это маленький шаг для одного человека, но огромный скачок для всего человечества».

  • 1 Этимология
  • 2 История
    • 2.1 Ранняя история (до 1945 года)
    • 2.2 Ранняя советская ракетно-космическая программа
    • 2.3 Ранняя американская ракетно-космическая программа
    • 2.4 Важнейшие этапы освоения космоса с 1957 года
    • 2.5 Современность
  • 3 Коммерческое освоение космоса
  • 4 Военно-космическая деятельность
  • 5 Космические агентства
  • 6 Важные космические программы и полёты КА разных стран
    • 6.1 Искусственные спутники Земли (ИСЗ)
      • 6.1.1 Космические телескопы
    • 6.2 Автоматические межпланетные станции
      • 6.2.1 Лунные станции
    • 6.3 Пилотируемые полёты
    • 6.4 Орбитальные станции
    • 6.5 Частные космические корабли
  • 7 Ракеты-носители
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Этимология

Впервые термин «космонавтика» появился в названии научного труда Ари Абрамовича Штернфельда «Введение в космонавтику» (фр. «Initiation à la Cosmonautique»), который был посвящён вопросам межпланетных путешествий. 1933 году работа была представлена польской научной общественности, но не вызвала интереса и была издана лишь в 1937 году в СССР, куда в 1935 переехал автор. Благодаря ему же, в русский язык вошли слова «космонавт» и «космодром». Долгое время эти термины считались экзотическими, и даже Яков Перельман упрекал Штернфельда в том, что тот запутывает вопрос, выдумывая неологизмы вместо устоявшихся названий:«астронавтика», «астронавт», «ракетодром». Основные идеи, изложенные в монографии, Штернфельд доложил в Варшавском университете 6-го декабря 1933 года.

В словарях слово «космонавтика» отмечено с 1958 года. художественной литературе слово «космонавт» впервые появилось в 1950 году в фантастической повести Виктора Сапарина «Новая планета».

В целом, в русском языке -навт, -навтик(а) утратили своё значение (какое эти слова имели в греческом языке) и превратились в подобие служебных частей слова, вызывающих представление о «плавании» - как то «стратонавт», «акванавт» и т. п.

История

Ранняя история (до 1945 года)

Макет первого искусственного спутника Земли.

Идея космических путешествий возникла после появления гелиоцентрической системы мира, когда стало ясно, что планеты - это объекты, подобные Земле, и таким образом, человек в принципе мог бы посетить их. Первым опубликованным описанием пребывания человека на Луне стала фантастическая повесть Кеплера «Somnium» (написана 1609, опубликована 1634). Фантастические путешествия на другие небесные тела описывали также Фрэнсис Годвин, Сирано де Бержерак и другие.

Теоретические основы космонавтики были заложены в работе Исаака Ньютона «Математические начала натуральной философии», опубликованной в 1687 году. Существенный вклад в теорию расчёта движения тел в космическом пространстве внесли также Эйлер и Лагранж.

Романы Жюля Верна «С Земли на Луну» (1865) и «Вокруг Луны» (1869) уже правильно описывают полёт Земля-Луна с точки зрения небесной механики, хотя техническая реализация там явно хромает.

23 марта 1881 года Н. И. Кибальчич, находясь в заключении, выдвинул идею ракетного летательного аппарата с качающейся камерой сгорания для управления вектором тяги. За несколько дней до казни Кибальчич разработал оригинальный проект летательного аппарата, способного совершать космические перелёты. Его просьба о передаче рукописи в Академию наук следственной комиссией удовлетворена не была, проект был впервые опубликован лишь в 1918 году в журнале «Былое», № 4-5.

Российский учёный Константин Циолковский был одним из первых, кто выдвинул идею об использовании ракет для космических полётов. Ракету для межпланетных сообщений он спроектировал в 1903 году. Формула Циолковского, определяющая скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Немецкий ученый Герман Оберт в 1920-е годы также изложил принципы межпланетного полёта.

Американский ученый Роберт Годдард в 1923 году начал разрабатывать жидкостный ракетный двигатель и работающий прототип был создан к концу 1925 года. 16 марта 1926 года он осуществил запуск первой жидкостной ракеты, в качестве топлива для которой использовались бензин и жидкий кислород.

Работы Циолковского, Оберта и Годдарда были продолжены группами энтузиастов ракетной техники в США, СССР и Германии. СССР исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). 1933 году на их базе был создан Реактивный институт (РНИИ).

В Германии подобные работы вело Немецкое Общество межпланетных сообщений (VfR). 14 марта 1931 член VfR Йоханнес Винклер осуществил первый в Европе удачный запуск жидкостной ракеты. VfR работал и Вернер фон Браун, который с декабря 1932 года начал разработку ракетных двигателей на артиллерийском полигоне германской армии в Куммерсдорфе. После прихода нацистов к власти в Германии были выделены средства на разработку ракетного оружия, и весной 1936 года была одобрена программа строительства ракетного центра в Пенемюнде, техническим директором которого был назначен фон Браун. нём была разработана баллистическая ракета А-4 с дальностью полета 320 км. Во время Второй мировой войны 3 октября 1942 года состоялся первый успешный запуск этой ракеты, а в 1944 году началось её боевое применение под названием V-2. июне 1944 года ракета V-2 стала первым сделанным человеком объектом в космосе, достигнув в суборбитальном полете высоты 176 км.

Военное применение V-2 продемонстрировало огромные возможности ракетной техники, и наиболее мощные послевоенные державы - США и СССР - начали разработку баллистических ракет на основе трофейных германских технологий и с привлечением пленных германских инженеров.

См. также:Второе (космическое) управление и Совет главных конструкторов

Для создания средств доставки ядерного оружия 13 мая 1946 года Совет Министров СССР принял постановление о развёртывании масштабной работы по развитию ракетостроения. соответствии с этим постановлением было создано Второе (космическое) управление и Научно-исследовательский артиллерийский институт реактивного вооружения № 4.

Начальником института был назначен генерал А. И. Нестеренко, его заместителем по специальности «Жидкостные баллистические ракеты» - полковник М. К. Тихонравов, соратник С. П. Королёва по ГИРДу и РНИИ. Михаил Клавдиевич Тихонравов был известен как создатель первой жидкостной ракеты, стартовавшей в Нахабино 17 августа 1933 года. Он же в 1945 году возглавил проект подъёма двух космонавтов на высоту 200 километров с помощью ракеты типа «Фау-2» и управляемой ракетной кабины. Проект был поддержан Академией наук и одобрен Сталиным. Однако в трудные послевоенные годы руководству военной отрасли было не до космических проектов, которые воспринимались как фантастика, мешающая выполнению главной задачи по созданию «дальнобойных ракет».

Исследуя перспективы развития ракет, создаваемых по классической последовательной схеме, М. К. Тихонравов пришёл к выводу об их непригодности для межконтинентальных расстояний. Исследования, проведённые под руководством Тихонравова, показали, что пакетная схема из ракет, созданных в КБ Королёва, обеспечит скорость в четыре раза большую, чем возможная при обычной компоновке. Внедрением «пакетной схемы» группа Тихонравова приблизила выход человека в космическое пространство. инициативном порядке продолжались исследования проблем, связанных с запуском спутников и их возвращением на Землю.

16 сентября 1953 года по заказу ОКБ Королёва в НИИ-4 была открыта первая научно-исследовательская работа по космической тематике «Исследования по вопросу создания первого искусственного спутника Земли». Группа Тихонравова, имевшая солидный задел по этой теме, выполнила её оперативно.

В 1956 году М. К. Тихонравов с частью своих сотрудников переводится из НИИ-4 в ОКБ Королёва начальником отдела по проектированию спутников. При его непосредственном участии создаются первые ИСЗ, пилотируемые корабли, проекты первых автоматических межпланетных и лунных аппаратов.

Ранняя американская ракетно-космическая программа

«Спутниковый кризис», то есть тот факт, что первый искусственный спутник Земли был запущен в СССР, а не в США, привел ко многим инициативам правительства США, направленным на развитие космических исследований:

  • принятие закона о подготовке кадров для национальной обороны в сентябре 1958;
  • создание в феврале 1958 Агентства передовых оборонных исследовательских проектов - DARPA;
  • создание указом президента США Эйзенхауэра от 29 июля 1958 Национального управления по аэронавтике и исследованию космического пространства - NASA;
  • огромное увеличение инвестиций в космические исследования. 1959 Конгресс США выделил на эти цели 134 миллиона долларов, что в четыре раза превышает показатель предыдущего года. К 1968 эта цифра достигла 500 миллионов.

Началась космическая гонка между США и СССР. Первым спутником, запущенным США, стал спутник «Эксплорер-1», запущенный 1 февраля 1958 года командой Вернера фон Брауна (он был завербован для работы в США по программе Операция «Беспросветность» (англ. Operation Overcast), позднее ставшей известной под названием Операция «Скрепка»). Для запуска была создана форсированная версия баллистической ракеты Редстоун, названная Юпитер-С (Jupiter-C), первоначально предназначавшаяся для испытания уменьшенных макетов боеголовок.

Этому запуску предшествовала неудачная попытка ВМС США запустить спутник «Авангард-1», широко разрекламированный в связи с программой Международного Геофизического Года. Фон Брауну по политическим причинам долго не давали разрешения на запуск первого американского спутника (руководство США хотело, чтобы спутник был запущен военными), поэтому подготовка к запуску «Эксплорера» началась всерьёз лишь после аварии «Авангарда».

Первым астронавтом США в космосе стал Алан Шепард, который 5 мая 1961 года совершил суборбитальный полёт на космическом корабле Меркурий-Редстоун-3. Первым из астронавтов США орбитальный полёт совершил Джон Гленн 20 февраля 1962 года на корабле Меркурий-Атлас-6.

Важнейшие этапы освоения космоса с 1957 года

В 1957 году под руководством Королёва была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли.

  • 4 октября 1957 - запущен первый искусственный спутник Земли Спутник-1.
  • 3 ноября 1957 - запущен второй искусственный спутник Земли Спутник-2, впервые выведший в космос живое существо, - собаку Лайку.
  • 4 января 1959 - станция «Луна-1» прошла на расстоянии 6000 километров от поверхности Луны и вышла на гелиоцентрическую орбиту. Она стала первым в мире искусственным спутником Солнца.
  • 14 сентября 1959 - станция «Луна-2» впервые в мире достигла поверхности Луны в районе Моря Ясности вблизи кратеров Аристилл, Архимед и Автолик, доставив вымпел с гербом СССР.
  • 4 октября 1959 - запущена автоматическая межпланетная станция «Луна-3», которая впервые в мире сфотографировала невидимую с Земли сторону Луны. Также во время полёта впервые в мире был на практике осуществлён гравитационный манёвр.
  • 19 августа 1960 - совершён первый в истории орбитальный полёт в космос живых существ с успешным возвращением на Землю. На корабле «Спутник-5» этот полёт совершили собаки Белка и Стрелка.
  • 1 декабря 1960 - совершён первый запуск человеческих клеток в космос – клеток Генриетты Лакс. Зарождение космической клеточной биологии.
  • 12 апреля 1961 - совершён первый полёт человека в космос (Юрий Гагарин) на корабле Восток-1.
  • 12 августа 1962 - совершён первый в мире групповой космический полёт на кораблях Восток-3 и Восток-4. Максимальное сближение кораблей составило около 6.5 км.
  • 16 июня 1963 - совершён первый в мире полёт в космос женщины-космонавта (Валентина Терешкова) на космическом корабле Восток-6.
  • 12 октября 1964 - совершил полёт первый в мире многоместный космический корабль Восход-1.
  • 18 марта 1965 - совершён первый в истории выход человека в открытый космос. Космонавт Алексей Леонов совершил выход в открытый космос из корабля Восход-2.
  • 3 февраля 1966 - АМС Луна-9 совершила первую в мире мягкую посадку на поверхность Луны, были переданы панорамные снимки Луны.
  • 1 марта 1966 - станция «Венера-3» впервые достигла поверхности Венеры, доставив вымпел СССР. Это был первый в мире перелёт космического аппарата с Земли на другую планету.
  • 3 апреля 1966 - станция «Луна-10» стала первым искусственным спутником Луны.
  • 30 октября 1967 - произведена первая стыковка двух беспилотных космических аппаратов «Космос-186» и «Космос-188». (CCСР).
  • 15 сентября 1968 - первое возвращение космического аппарата (Зонд-5) на Землю после облета Луны. На борту находились живые существа:черепахи, плодовые мухи, черви, растения, семена, бактерии.
  • 16 января 1969 - произведена первая стыковка двух пилотируемых космических кораблей Союз-4 и Союз-5.
  • 21 июля 1969 - первая высадка человека на Луну (Н. Армстронг) в рамках лунной экспедиции корабля Аполлон-11, доставившей на Землю, в том числе и первые пробы лунного грунта.
  • 24 сентября 1970 - станция «Луна-16» произвела забор и последующую доставку на Землю (станцией «Луна-16») образцов лунного грунта. Она же - первый беспилотный космический аппарат, доставивший на Землю пробы породы с другого космического тела (то есть, в данном случае, с Луны).
  • 17 ноября 1970 - мягкая посадка и начало работы первого в мире полуавтоматического дистанционно управляемого самоходного аппарата, управляемого с Земли:Луноход-1.
  • 15 декабря 1970 - первая в мире мягкая посадка на поверхность Венеры:«Венера-7».
  • 19 апреля 1971 - запущена первая орбитальная станция Салют-1.
  • 13 ноября 1971 - станция «Маринер-9» стала первым искусственным спутником Марса.
  • 27 ноября 1971 - станция «Марс-2» впервые достигла поверхности Марса.
  • 2 декабря 1971 - первая мягкая посадка АМС на Марс:«Марс-3».
  • 3 марта 1972 - запуск первого аппарата, покинувшего впоследствии пределы Солнечной системы:Пионер-10.
  • 20 октября 1975 - станция «Венера-9» стала первым искусственным спутником Венеры.
  • октябрь 1975 - мягкая посадка двух космических аппаратов «Венера-9» и «Венера-10» и первые в мире фотоснимки поверхности Венеры.
  • 12 апреля 1981 - первый полёт первого многоразового транспортного космического корабля «Колумбия».
  • 20 февраля 1986 - вывод на орбиту базового модуля орбитальной станции Мир
  • 15 ноября 1988 - первый и единственный космический полёт МКС «Буран» в автоматическом режиме.
  • 24 апреля 1990 - запуск телескопа Хаббл на околоземную орбиту.
  • 7 декабря 1995 - станция «Галилео» стала первым искусственным спутником Юпитера.
  • 20 ноября 1998 - запуск первого блока «Заря» Международной космической станции.
  • 24 июня 2000 - станция «NEAR Shoemaker» стала первым искусственным спутником астероида (433 Эрос).
  • 30 июня 2004 - станция «Кассини» стала первым искусственным спутником Сатурна.
  • 15 января 2006 - станция «Стардаст» доставила на землю образцы кометы Вильда 2.
  • 17 марта 2011 - станция «MESSENGER» стала первым искусственным спутником Меркурия.

Современность

Сегодняшний день характеризуется новыми проектами и планами освоения космического пространства. Активно развивается космический туризм. Пилотируемая космонавтика вновь собирается вернуться на Луну и обратила свой взор к другим планетам Солнечной системы (в первую очередь к Марсу).

В 2009 году в мире на космические программы было потрачено $68 млрд, в том числе в США - $48,8 млрд, ЕС - $7,9 млрд, Японии - $3 млрд, России - $2,8 млрд, Китае - $2 млрд.

Программы пилотируемой космонавтики имеют тенденцию к сокращению. С 1972 года прекращены пилотируемые полёты к другим космическим телам, в 2011 году прекращены программы многоразовых космических кораблей, осталась только одна орбитальная станция против двух одновременно поддерживаемых СССР в середине 1980-х годов.

Коммерческое освоение космоса

Существуют три основных направления прикладной космонавтики:

  • Космические информационные комплексы - современные системы связи, метеорология, навигация, системы контроля использования природных ресурсов, охрана окружающей среды.
  • Космические научные системы - научные исследования и натурные эксперименты.
  • Космическая индустриализация - производство фармакологических препаратов, новых материалов для электронной, электротехнической, радиотехнических и других отраслей. перспективе - разработка ресурсов Луны, других планет Солнечной системы и астероидов, удаление в космос отходов вредных промышленных производств.

Военно-космическая деятельность

Основная статья:Военно-космическая деятельность

Космические аппараты используются для спутниковой разведки, дальнего обнаружения баллистических ракет, связи, навигации. Создавались также системы противоспутникового оружия.

Космические агентства

Основная статья:Список космических агентств
  • Бразильское космическое агентство - основано в 1994 году.
  • Европейское космическое агентство (ЕКА) - 1964.
  • Индийская организация космических исследований - 1969.
  • Канадское космическое агентство - 1989.
  • Китайское национальное космическое управление - 1993.
  • Национальное космическое агентство Украины (НКАУ) - 1996.
  • Национальное управление США по аэронавтике и использованию космоса (НАСА) - 1958.
  • Федеральное космическое агентство России (ФКА РФ) - (1990).
  • Японское агентство аэрокосмических исследований (JAXA) - 2003.

Важные космические программы и полёты КА разных стран

Искусственные спутники Земли (ИСЗ)

  • Спутник - серия первых в мире ИСЗ.
    • Спутник-1 - первый аппарат, запущенный человеком в космос.
  • Авангард - серия первых американских спутников. (США)

Спутники СССР и России списком :Электрон // Полёт// Метеор // Экран // Радуга // Горизонт // Молния // Гейзер // Альтаир // Купон // ГЛОНАСС // Парус // Фотон // Око // Стрела // Ресурс // Целина // Бион // Вектор /Ромб // Цикада.

Космические телескопы

  • Астрон - космический ультрафиолетовый телескоп (СССР).
  • Хаббл - космический телескоп-рефлектор. (США).
  • Swift - космическая обсерватория для наблюдения гамма-вспышек (США, Италия, Великобритания).

Автоматические межпланетные станции

  • Пионер - программа исследования Луны, межпланетного пространства, Юпитера и Сатурна. (США)
  • Вояджер - программа исследования планет-гигантов. (США)
  • Маринер - исследования Венеры, Марса и Меркурия. (США)
  • Марс - исследования Марса, первая мягкая посадка на его поверхность. (СССР)
  • Венера - программа исследования атмосферы Венеры и её поверхности. (СССР)
  • Викинг - программа исследования поверхности Марса. (США)
  • Вега - встреча с кометой Галлея, высадка аэрозонда на Венеру. (СССР)
  • Фобос - программа исследований спутников Марса. (СССР)
  • Марс Экспресс - искусственный спутник Марса, высадка марсохода «Бигль-2». (ЕКА)
  • Галилео - исследование Юпитера и его спутников. (НАСА)
  • Гюйгенс - зонд для исследования атмосферы Титана. (ЕКА)
  • Розетта - высадка космического аппарата на ядро кометы Чурюмова-Герасименко (ЕКА).
  • Хаябуса - забор грунта с астероида Итокава (JAXA).
  • MESSENGER - исследование Меркурия (НАСА).
  • Магеллан (КА) - исследование Венеры (НАСА).
  • Новые горизонты - исследование Плутона и его спутников (НАСА).
  • Venus Express- исследование Венеры (ЕКА).
  • Phoenix - программа исследования поверхности Марса (НАСА).

Лунные станции

  • Луна - исследование Луны, доставка лунного грунта, Луноход-1 и Луноход-2. (СССР)
  • Рейнджер - получение телевизионных изображений Луны при падении на её поверхность. (США)
  • Эксплорер 35 (Лунар Эксплорер 2) - изучение Луны и окололунного пространства с селеноцентрической орбиты. (США)
  • Лунар Орбитер - вывод на орбиту вокруг Луны, картографирование лунной поверхности. (США).
  • Сервейер - отработка мягкой посадки на Луну, исследования лунного грунта (США).
  • Lunar Prospector - исследования Луны (США).
  • Смарт-1 - исследования Луны, аппарат оснащён ионным двигателем. (ЕКА).
  • Kaguya - исследования Луны и окололунного пространства (Япония).
  • Чанъэ-1 - исследования Луны, картографирование лунной поверхности (Китай).

Пилотируемые полёты

  • Восток - отработка первых пилотируемых полётов в космос. (СССР, 1961-1963)
  • Меркурий - отработка пилотируемых полётов в космос. (США, 1961-1963)
  • Восход - пилотируемые орбитальные полёты; первый выход в открытый космос, первые многоместные корабли. (СССР, 1964-1965)
  • Джемини - двухместные космические корабли, первые стыковки на околоземной орбите. (США, 1965-1966)
  • Аполлон - пилотируемые полеты на Луну. (США, 1968-1972/1975)
  • Союз - пилотируемые орбитальные полеты. (СССР/Россия, с 1968)
    • Экспериментальный проект Аполлон-Союз (ЭПАС) (англ. Apollo-Soyuz Test Project, ASTP, 1975).
  • Спейс Шаттл - многоразовый космический корабль. (США, 1981-2011)
  • Шэньчжоу - орбитальные пилотируемые полёты. (Китай, с 2003)

Орбитальные станции

  • Салют - первая серия орбитальных станций. (СССР)
  • Скайлэб - орбитальная станция. (США)
  • Мир - первая орбитальная станция модульного типа. (СССР)
  • Международная космическая станция (МКС).
  • Тяньгун-1 (КНР)

Частные космические корабли

  • SpaceShipOne - первый частный космический корабль (суборбитальный).
  • SpaceShipTwo - туристический суборбитальный космический корабль. Дальнейшее развитие SpaceShipOne.
  • Дракон (Dragon SpaceX) - транспортный космический корабль, разрабатывается компанией SpaceX, по заказу НАСА в рамках программы «Коммерческой орбитальной транспортировки» (COTS).

Ракеты-носители

Основная статья:Ракета-носитель См. также:Список ракет-носителей

См. также

  • Космодром
  • Космическая индустрия
  • Список космонавтов и астронавтов
  • Космонавтика России Роскосмос Орбитальная спутниковая группировка России
  • Хронология пилотируемых космических полётов
  • Хронология космических исследований
  • История исследования Солнечной системы
  • Первые в космосе

Примечания

  1. Космонавтика - Астрономический словарь.EdwART (2010). Проверено 29 ноября 2012. Архивировано из первоисточника 1 декабря 2012.
  2. Статья Эдуарда Вилля Георгий Лангемак - отец «Катюши»
  3. 1 2 Первушин А. И. «Красный космос. Звездные корабли Советской империи». М.:«Яуза», «Эксмо», 2007. ISBN 5-699-19622-6
  4. 1 2 П. Я. Черных. «Историко-этимологический словарь современного русского языка», том 1. М.:«Русский язык», 1994. ISBN 5-200-02283-5
  5. Н. И. Кибальчич. Биографическая статья в БСЭ.
  6. Вальтер Дорнбергер:Пенемюде, c. 297 (Peenemuende, Walter Dornberger, Moewig, Berlin 1985. ISBN 3-8118-4341-9) (нем.)
  7. Ракета. Историческая справка
  8. Что составляло примерно 0,14 % (1958) и 0,3 % (1960) от расходов федерального бюджета США
  9. Бессмертные клетки HeLa
  10. Исследование:США затратили на космические программы $48,8 млрд // ИТАР-ТАСС

Литература

  • К. А. Гильзин. Путешествие к далеким мирам. Государственное издательство детской литературы Министерства просвещения РСФСР. Москва, 1956
  • Циолковский К. Э. Труды по космонавтике. М.:Машиностроение, 1967.
  • Штернфельд А. А. Введение в космонавтику. М.; Л.:ОНТИ, 1937. 318 с; Изд. 2-е. М.:Наука, 1974. 240 с.
  • Жаков А. М Основы космонавтики. СПб:Политехника, 2000. 173 с. ISBN 5-7325-0490-7
  • Тарасов Е. В. Космонавтика. М.:Машиностроение, 1977. 216 с.
Энциклопедии по космонавтике
  • Космонавтика. Малая энциклопедия. Гл. редактор В. П. Глушко. М.:Советская энциклопедия, 1970. 527 c.
  • Энциклопедия Космонавтика. Гл. ред. В. П. Глушко. М.:Советская энциклопедия, 1985. 526 c.
  • Всемирная энциклопедия космонавтики. 2-х томах. М.:Военный парад, 2002.
  • интернет-энциклопедия «Космонавтика»

Ссылки

  • ФКА РФ
  • РКК «Энергия» имени С. П. Королёва
  • НПО им. С. А. Лавочкина
  • ГКНПЦ им. М. В. Хруничева
  • Исследовательский центр имени М. В. Келдыша
  • Пилотируемый космос
  • Фотоархив «История отечественной космонавтики»
  • Первые в космосе (огромный фото-, аудио-, видео- архив советской и российской космонавтики)
  • Всероссийский детский и молодёжный центр аэрокосмического образования им. С. П. Королева Мемориального музея космонавтики (ВДМЦ АКО)
  • Из истории развития отечественной космонавтики:исследование космического пространства с помощью автоматических космических станций - научно-популярная лекция, прочитанная Н. Морозовым в ФИАНе в 2007 г.

космонавтика, космонавтика в україні, космонавтика и её связь с другими науками, космонавтика история, космонавтика картинка, космонавтика картинки, космонавтика костюмы и корабли, космонавтика россии, космонавтика-уикипедия

Космонавтика Информацию О

История пилотируемой космонавтики началась 12 апреля 1961 г., когда советский летчик-космонавт Юрий Гагарин совершил первый космический полет продолжительностью 108 минут и навсегда вошел в историю развития нашей цивилизации. Это событие аккумулировало в себе титанические усилия и накопленный научно-технический потенциал ракетно-космической отрасли СССР.

В 1971 г. первый экипаж орбитальной станции "Салют" в составе космонавтов Г.Т. Добровольского, В.Н. Волкова и В.И. Пацаева погиб, возвращаясь после успешного выполнения задания. А космос продолжал собирать жертвы. В 1986 г. катастрофа с американским многоразовым космическим кораблем Challenger унесла жизни семи космонавтов.

Одной из вех, не столь трагической, но тем не менее печальной, на этом тернистом пути стала наша пилотируемая лунная программа. Начатая в 1964 г., она изначально отставала от американской, объявленной в 1961 г. и возведенной в ранг национальной. Успех этой программы стал делом каждого американца. О существовании нашей программы широкая советская общественность могла только догадываться. Ключевым элементом как отечественной, так и американской пилотируемых лунных программ являлся сверхтяжелый носитель. Для успешного осуществления перелета к Луне, посадки и возвращения на Землю требовалось вывести на низкую околоземную орбиту более 100 т полезного груза.

Американцы начали разрабатывать сверхтяжелый носитель по программе Saturn в 1958 г., а в 1961 г. уже состоялся запуск двухступенчатого варианта такого носителя. В 1963 г. было принято окончательное решение о варианте полета к Луне и выбрана трехступенчатая ракета-носитель Saturn, позволяющая выводить на низкую околоземную орбиту 139 т полезного груза и 65 т на траекторию полета к Луне. К испытаниям отечественного носителя HI, выбранного для осуществления нашей пилотируемой лунной программы, приступили только в феврале 1969 г. Масса полезного груза, который должен был выводить на низкую околоземную орбиту этот носитель, составила 70 т.

В длившейся более четырех лет лунной гонке первыми оказались американцы. В декабре 1968 г. американские астронавты на космическом корабле Аро11о-8 совершили полет по орбите вокруг Луны. Наша попытка в феврале 1969 г. проделать то же самое, но в беспилотном варианте, закончилась неудачей (падение ракеты-носителя из-за выключения двигателей). После высадки американских астронавтов на Луне в июле 1969 г. советское руководство потеряло интерес к лунной программе, а четыре подряд аварийных пуска ее основного "локомотива" - сверхтяжелой ракеты-носителя HI - окончательно похоронили отечественную пилотируемую лунную программу.

Пилотируемая экспедиция на Марс в XX в. не получила техни-ческой реализации. Однако как в США,так и в СССР рассматривались различные проекты осуществления таких экспедиций начи-ная с 1960-х гг. Так, один из проектов предусматривал использование в качестве двигателя электрореактивной установки. Масса всего марсианского комплекса могла достигать нескольких сотен тонн. Несмотря на невостребованность эти проекты явились шагом вперед в освоении космоса человеком, а созданный при их разработке научно-технический задел безусловно будет использован при подготовке будущих марсианских экспедиций. После полета Ю.А. Гагарина отечественная пилотируемая космонавтика набирала темпы, очень быстро пройдя путь от единичных краткосрочных полетов к постоянному пребыванию экипажей космонавтов на орбите.

Легендарные "Востоки" и "Восходы" быстро были заменены космическими станциями "Салют" первого поколения, позволившими обеспечить жизнедеятельность и работу орбитальных экипажей на значительное время,ограниченное лишь объемом тех запасов, которые были доставлены на космическую станцию. В это же время впервые были созданы предпосылки для перехода от рассмотрения вопроса типа "стоит ли вообще запускать человека в космос?" к проблемам уровня "а сможет ли человек долететь до Марса и далее к звездам и что для этого необходимо сделать?", поставленным в свое время еще К.Э. Циолковским.

Следствием органичного развития научно-технической мысли явилось создание станций "Салют" второго поколения, наиболее существенным отличием которых явилась отработанная система транспортного обслуживания, дающая возможность организации длительных космических полетов.

Очередным шагом в развитии советской космонавтики стало создание орбитальной станции следующего поколения - пилотируемого космического комплекса "Мир", оперативно-техническое руководство по подготовке и запуску которого осуществлял директор Машиностроительного завода им. М.В. Хруничева А.И. Киселев. "Мир" представлял собой сложную блочномодульную конструкцию, которая могла адаптироваться в полете даже к радикально изменяющимся условиям. Так, например, при проектировании комплекса "Мир" и в первые годы его полета и речи не было о стыковке комплекса с орбитальным кораблем системы Space Shuttle (в качестве основного варианта рассматривалась сты-ковка комплекса с "Бураном"), и уже в условиях космического полета комплекса были проведены его доработка и дооснащение, позволившие решить и эту задачу.

Следует отметить, что одним из итогов развития пилотируемой космонавтики XX в. явился обоснованный вывод о невозможности дальнейшего продуктивного ее развития без широкого внедрения принципа международного сотрудничества. Поэтому следующий этап развития пилотируемой космонавтики, приходящийся на XXI в., будет ознаменован органичным соединением усилий различных стран в работе над единым проектом. Программы пилотируемой космонавтики предусматривают широкую поэтапную организационно-техническую интеграцию проводимых Россией работ с национальными космическими программами США, стран Западной Европы, Японии и Канады. Федеральной космической программой предусмотрено поэтапное внедрение России в международные программы пилотируемых полетов с широким использованием опыта создания и эксплуатации отечественной орбитальной пилотируемой станции "Мир". Основными шагами на пути такого внедрения являлись:

  1. Программы полетов иностранных космонавтов в составе экипажей комплексов "Салют" и "Мир".
  2. Программа "Мир" - Shuttle (1994 - 1995 гг.), включавшая проведение совместных работ на российской станции "Мир" и американском корабле Shuttle, а также полеты российских космонавтов на корабле Shuttle и пребывание американских астронавтов на станции "Мир".
  1. Программа "Мир" - НАСА (1995 - 1997 гг.), имевшая направленность на продолжение и расширение научных исследований в интересах России и США на борту станции "Мир" с использованием кораблей "Союз ТМ" и Shuttle для реализации транспортных операций.

Несмотря на низкий уровень государственного финансирования все же удалось выполнить основной объем запланированных ра-бот. Хотя и с некоторым опозданием, но выполнены программы "Мир" - Shuttle и "Мир" - НАСА. Следующий шаг - программа Международная космическая станция (МКС), осуществляемая в настоящее время, - предусматривает создание Международной космической станции на основе результатов реализации национальных программ России и США ("Мир-2" и Freedom) с расширенными научно-техническими возможностями по проведению фундаментальных исследований и прикладных работ в космосе, связанных с обеспечением жизнедеятельности человека, космической технологией и биотехнологией, природопользованием и экологией, а также отработкой элементов перспективной космической техники.

Необходимо отметить, что стремление к лидерству отечественной космонавтики в области пилотируемого космоса, несомненно, было связано с использованием орбитального комплекса "Мир". Комплекс "Мир", первый модуль которого (базовый блок) выведен на орбиту 20 февраля 1986 г., является крупнейшим научно-техническим достижением в области пилотируемых космических полетов и освоения околоземного космического пространства. Всего по программе полета комплекса "Мир" проведено 102 успешных пуска кораблей и модулей различных типов (включая пуски американского корабля Shuttle).

Комплекс "Мир" не имеет аналогов и является абсолютным мировым рекордсменом по следующим позициям:

  • длительности эксплуатации на орбите;
  • суммарному налету космонавтов на борту комплекса;
  • многопрофильности и объемам проведенных на борту научно-технических программ и исследований;
  • числу выполненных программ в рамках международного сотрудничества, а также объему работ, проведенных на коммерческой основе.

Ресурсные характеристики и уровень международного сотрудничества комплекса "Мир" соизмеримы с соответствующими проектными характеристиками МКС. В течение почти 15 лет эксплуатации комплекса "Мир" на нем была сформирована уникальная научная лаборатория, которая вкдючала природоведческий комплекс, состоящий из блока спектрорадиометрических инструментов, астрофизическую лабораторию из шести мощных телескопов и спектрометров, технологические печи, медицинские диагностические комплексы. На базе научного комплекса проведено около 18 000 сеансов (экспериментов) по таким важнейшим направлениям исследований, как технология, биотехнология, геофизика, исследование природных ресурсов Земли и экология, астрофизика, медицина, биология, материаловедение, испытания техники и ряд других.

Реализация программы обеспечивалась многоотраслевой кооперацией работающих в области наукоемких технологий организаций и предприятий России и стран СНГ. В процессе эксплуатации комплекса "Мир" накоплен уникальный опыт, основу которого составляет долгосрочное прогнозирование технического состояния, периодическое продление срока эксплуатации и специальная, постоянно совершенствуемая технология ремонтно-восстановительных работ, включая работы в открытом космическом пространстве.

Ни в коем случае нельзя рассматривать изолированно проекты орбитального комплекса "Мир" и МКС, так как Россия делится накопленным опытом организации, обеспечения и проведения орбитальных полетов с партнерами по МКС. В последнее время в связи с участием России в создании Международной космической станции возник вопрос о целесообразности продолжения эксплуатации комплекса "Мир", ввиду того что ограниченное государственное финансирование не позволяет одновременно выполнять две масштабные программы. Кроме того, значительное превышение предусмотренного ресурса сделало дальнейшую эксплуатацию станции "Мир" небезопасной. Было принято и в марте 2001 г. осуществлено правительственное решение о прекращении существования станции, ее управляемому сходу с орбиты и затоплении в океане.

Принцип международного космического сотрудничества определяет необходимость полномасштабного участия России в программе Международной космической станции. В XXI в. этому направлению практически нет альтернативы, поскольку расходы на пилотируемую космонавтику в значительной степени стали превышать финансовые возможности одной отдельно взятой страны.

С использованием МКС будут решаться фундаментальные научные проблемы, проводиться прикладные исследования и эксперименты в интересах развития фундаментальной науки, социально-экономической сферы и международного сотрудничества. Основными задачами, решаемыми с использованием Международной космической станции, будут:

  • проведение фундаментальных исследований с целью углубления и расширения знаний о Вселенной и окружающем нас мире;
  • проведение прикладных исследований с целью получения на борту КА геофизической информации для практического использования в сельском, лесном и рыбном хозяйствах, геологии, океанографии и экологии;
  • получения опытных партий полупроводниковых материалов, сплавов, градиентных стекол для исследований и применения в электронной промышленности, атомной энергетике, лазерной технике, проекционном телевидении; получения биологически активных веществ и лекарственных препаратов для медицинской и фармацевтической промышленности, молекулярной электроники, животноводства;
  • проведение работ в рамках программ международного сотрудничества том числе на коммерческой основе;
  • проведение работ по натурной отработке элементов и систем перспективных средств ракетно-космической техники.

Ожидается, что создание этой станции позволит:

  • расширить фундаментальные научные знания в области астрофизики, геофизики и экологии, материал сведения, медицины и биологии;
  • получить высококачественные-образцы новых материалов, биологически активных веществ и медицинских препаратов для использования в электронной и радиопромышленности, оптике, медицине и биологии;
  • повысить эффективность ОКР по созданию и отработке новых видов научной аппаратуры для различных космических систем;
  • получить прирост национального продукта страны от использования новых космических технологий в промышленности и от использования информации о природных ресурсах Земли и экологической обстановке в сельском и лесном хозяйстве, геологии;
  • получить валютные поступления от реализации программ по международному сотрудничеству на коммерческой основе;
  • создать научно-технический задел для перспективных программ исследования Луны и Марса в кооперации с зарубежными странами.

В сентябре 1988 г. правительства США, государств - членов ЕКА, Японии и Канады подписали межправительственное соглашение о сотрудничестве в области разработки, эксплуатации и использования Международной космической станции. В конце 1993 г. Правительство России получило от стран, подписавших это соглашение, приглашение к сотрудничеству по МКС и приняло его.

Проект создания МКС разрабатывался с середины 1980-х гг. и ранее носил название Freedom. До 1993 г. на работы по проекту было израсходовано 11,2 млрд. дол. Однако отсутствие в нем отработанных технических средств и технологий (которыми в значительной степени обладает Россия), обеспечивающих длительное пребывание и деятельность экипажа в условиях космического полета, аварийных средств спасения и экономически оправданных средств доставки на МКС топлива и грузов превращали проект в практически не реализуемый.

Участие России в проекте создания и использования МКС делает программу МКС более устойчивой и реализуемой. Ключевыми элементами и технологиями, которые поставляет Россия, позволяющими существенно ускорить сборку МКС, являются: служебный модуль (СМ), обеспечивающий жизнедеятельность от 3 до 6 членов экипажа; грузовые корабли "Прогресс-М" и их модификации, обеспечивающие снабжение станции расходными компонентами, в том числе топливом; пилотируемые корабли типа "Союз ТМ", обеспечивающие доставку и возвращение экипажа, его аварийное спасение в непредвиденных ситуациях. Аналогов этих средств у других партнеров по МКС (в том числе США) на сегодня нет. В целом российский сегмент Международной космической станции включает в свой состав следующие элементы: модуль "Заря", служебный модуль "Звезда", стыковочные отсеки, универсальный стыковочный и стыковочно-складской модули, научно-энергетическую платформу, исследовательские модули, корабли "Союз ТМ" и "Прогресс". Для доставки на орбиту основных модулей российского сегмента МКС используется ракетахноситель "Протон".

США, государства - члены ЕКА, Канада, Япония - партнеры России по МКС - заинтересованы в ее участии в проекте, понимая, что в противном случае проект становится значительно дороже, а создание станции окажется проблематичным. Этот вывод соответствует мнению американских специалистов. 7 октября 1998 г. на заседании НАСА Дэниэл Голдин впервые публично сообщил, что НАСА может запросить у конгресса дополнительные средства на сохранение роли России в программе создания космической станции и одновременно предпринять меры по уменьшению зависимости программы от российских изделий. Голдин также сообщил, что послание такого содержания было передано в Белый дом во время обсуждения бюджетного запроса НАСА на 2000 г.

По оценкам НАСА, дополнительно потребуется 1,2 млрд. дол., чтобы осуществить план по снижению роли России в программе. В ближайшем будущем НАСА будет покупать российские услуги и изделия. В более отдаленном времени космическое агентство США намерено создать свои изделия и услуги - например, модифицировать МТКС Space Shuttle, чтобы не нуждаться в запусках нескольких российских грузовых кораблей "Прогресс". Участие же России в проекте создания МКС является самым дешевым решением на ближайшее будущее.

Включение России в 1998 г. в число партнеров по МКС способствовало в определенной степени укреплению ее позиций на постсоветском экономическом пространстве. Один из основных ее партнеров по космической деятельности в рамках СНГ - Украина выразила желание тоже участвовать в этом проекте. Украина обратилась к России с предложением о сотрудничестве в создании украинского исследовательского модуля и включении его в состав российского сегмента МКС.

Предусмотрено коммерческое использование ресурсов российского сегмента МКС. Цель коммерческой космической деятельнсти в этом направлении - компенсация части расходов на создание российского сегмента МКС, минимизация эксплуатационных расходов, использование научно-технической продукции, полученной при разработке МКС и ее эксплуатации, в других отраслях экономики для обеспечения создания и развития передовой конкурентоспособной продукции.

Коммерческий интерес для бизнеса в XXI в. также могут представлять:

  • научно-техничеёкая продукция, полученная при разработке МКС на основе последних достижений космической науки и техники;
  • всесторонняя и своевременная подготовка членов экипажа МКС (помимо российских) в Центре подготовки космонавтов им. Ю.А. Гагарина;
  • выполнение заявок партнеров по МКС на доставку полезных нагрузок;
  • подготовка наземного оборудования и персонала для обеспечения запланированных экспериментов (работ) на МКС;
  • выполнение коммерческих заказов на разработку и изготовление материальной части в обеспечение проектов, реализуемых на технической базе российского сегмента МКС.

Интеграция России в международную космическую деятельность способствует укреплению ее позиций в мировом сообществе, усилению авторитета, влияния и понимания российских интересов другими государствами. При анализе отношений с ведущими государствами в области космической деятельности необходимо все время учитывать, что совместные научные проекты, реализация российских возможностей на рынке космических услуг и выполнение Россией принятых обязательств по ограничению и контролю за распространением ракетных технологий рассматриваются зарубежными партнерами как единое целое. Нарушение любой составляющей неминуемо ведет к сокращению (или прекращению) совместных работ не только в области космоса, но и в других областях экономического сотрудничества. В этих условиях в целях сохранения и развития космического потенциала России, расширения международного сотрудничества и привлечения значительных объемов зарубежных средств в ракетно-космическую промышленность страны необходимо обеспечить своевременное выполнение международных обязательств в области космоса (в том числе по созданию МКС).

Прогнозируемый срок функционирования МКС - до 2013 г. Для ее создания требуется 100 млрд. дол., доля России в этой сумме - 6,5...6,8 млрд. дол. Вложив свою долю в создание станции, наша страна получает право на треть ее ресурсов, в том числе: 43 % от времени пребывания и численности экипажа, 20 % энергетических ресурсов, 35 % объема гермоотсеков и 44 % рабочих мест.

Создание МКС успешно реализуется: уже находятся на орбите три элемента МКС, и первый из них - функционально-грузовой блок, разработанный ГКНПЦ им. М.В. Хруничева с привлечением кооперации в составе более 240 предприятий. Его название - "Заря" - символизирует начало нового этапа сотрудничества в области международной космонавтики.

Создание модуля, который по праву можно назвать "переходным отсеком в XXI в.", проходило в сложных условиях формирования конфигурации и изменения требований к МКС. Из сформированных изначально 1100 требований к МКС более трети претерпели изменения в процессе проектирования, изготовления и испытаний. В ходе работы специалистами ГКНПЦ им. М.В. Хруничева были решены сложные научно-технические и организационные проблемы, связанные с адаптацией ФГБ к международным стандартам и выполнением функций, обеспечивающих необходимые условия для развертывания и функционирования МКС:

  • поддержанием орбиты и управлением ориентацией МКС на начальных стадиях развертывания;
  • энергоснабжениеж Международной космической станции на начальном этапе развертывания;
  • обеспечением стыковочных работ;
  • выполнением функций хранилища расходуемых материалов;
  • поддержанием функций жизнеобеспечения.

Ожидается, что в XXI в. большое внимание будет уделено развитию технологий и технических средств для осуществления "малых" орбитальных полетов. Примером такой программы является программа "Орел", предусматривающая создание малогабаритного орбитального корабля для небольших космических экипажей (в составе одного-двух человек) для решения задач по спасению космонавтов, техническому обслуживанию орбитальных средств и ряда других.

Из всех небесных тел наиболее реальным в ближайшей перспективе представляется освоение Луны. Это обусловлено ее пространственной близостью, возможностью размещения на ее поверхности лунных баз различного целевого назначения: производственных, ремонтных, добывающих, астрофизических, систем астероидной защиты и др. В связи с этим следует ожидать в XXI в. возобновления и развития пилотируемых полетов на Луну.

Можно также предполагать пилотируемые полеты к планетам Солнечной системы, прежде всего к Марсу, температурные условия которого наиболее близки земным. Экспедиция на Марс возможна в уже первой четверти XXI в.

Следует отметить, что пилотируемые полеты к другим планетам представляются весьма проблематичными в связи с их высокой стоимостью, сложностью реализации и с прогнозируемым к середине XXI столетия резким обострением глобальных земных проблем. Поэтому исследование планет Солнечной системы и дальнего космоса, повидимому, будет продолжаться с помощью автоматических межпланетных космических аппаратов и зондов.

Заправлены в планшеты
Космические карты,
И штурман уточняет
В последний раз маршрут...

Владимир Войнович (1957)

В начале 2016 года о том, нужна ли человечеству пилотируемая космонавтика, дискутируют научный журналист, модератор Клуба научных журналистов Александр Сергеев и астроном, ст. науч. сотр. ГАИШ МГУ Владимир Сурдин.

Александр Сергеев :

Нередко звучит мнение , что пилотируемая космонавтика не нужна , что это «всегда была политическая фаллометрия между сверхдержавами» и все задачи космических исследований могут выполнить роботы. Хотя в определенных аспектах это суждение не лишено оснований, в общем случае оно является ошибочным.

Естественно, политическая конкуренция была основным двигателем пилотируемой космонавтики. Как результат эти технологии были созданы исторически несколько преждевременно, из-за чего оказались связаны с чрезмерными рисками и затратами. Думаю, реально востребованными они станут еще через полвека. Но раз уж технологии созданы, желательно их сохранять и совершенствовать, а не забрасывать, чтобы потом воссоздавать с нуля. В этом смысл неспешной деятельности вокруг МКС.

Единственной ключевой проблемой в освоении человеком космоса остается высокая стоимость вывода грузов на орбиту. Из-за этого слишком дорого создавать вне Земли полноценную технологическую инфраструктуру. А без нее очень высокими оказываются риски, что, в свою очередь, увеличивает затраты. Получается порочный круг. Если тем или иным способом удастся существенно удешевить доставку, развитие космонавтики резко ускорится.

Принципиально это возможно. По формуле Циолковского для разгона 1 кг до первой космической скорости с помощью химических двигателей нужно всего около 20 кг топлива, то есть порядка 10 долл. Реальная стоимость доставки груза на МКС - около 30 тыс. долл. за килограмм.

Накрутка на 3,5 порядка (!) связана с традиционными технологическими решениями и организационными процессами, а также с вынужденно завышенными требованиями к безопасности (из-за невозможности оказания технической помощи в полете). Почти наверняка эту стоимость можно снизить в десятки раз за счет масштабирования космической деятельности, создания технологической инфраструктуры на орбите и реализации оригинальных идей, вроде запусков с высотных платформ или электромагнитных катапульт.

Что же касается необходимости пилотируемой космонавтики, то задачи, которые в обозримом будущем неосуществимы для автоматов, в космосе есть. Несколько лет назад я читал на эту тему американский отчет. Главной из таких задач там называлось геологическое бурение на поверхности других небесных тел. Речь шла не о скромных экспериментах, как на «Луне-24» или на «Кьюриосити», а о полноценном разведывательном бурении на десятки и сотни метров.

Также предлагаю сравнить скорость передвижения по поверхности:

  • Лунный ровер «Аполлона-17» - 36 км за 3 дня - 12 км / сутки.
  • «Луноход-2» - 42 км за 4 месяца - 350 м / сутки.
  • «Оппортьюнити» - 42 км за 11,5 лет - 10 м / сутки.

Как сделать космическую базу рентабельной?

Есть мнение, что даже при снижении стоимости выведения на орбиту на порядок и росте орбитального трафика на два порядка пилотируемая космонавтика не найдет коммерческого оправдания. Я полагаю, что это не совсем так. Уже сейчас есть направления, которые находятся на грани рентабельности, а если стоимость выведения снизится на порядок-полтора, то работающие бизнес-идеи просто непременно появятся.

Сейчас на МКС живет шесть человек. Если принять рост орбитального трафика в сто раз, то космическое население должно вырасти даже больше, поскольку будет значительная экономия ресурсов за счет масштабирования и синергии. Итак, на орбите работает около тысячи человек. Чем они могут там заниматься?

Более или менее понятно, что не астрономическими наблюдениями, поскольку для этого даже на земных обсерваториях присутствие человека обычно не требуется.

Уникальное торговое предложение космической базы включает длительную невесомость, высокий вакуум, впечатляющий вид Земли из космоса, возможность сборки и обслуживания космических аппаратов без сведения их с орбиты. Возможно, я что-то упустил, но эти пункты очевидны.

Прежде всего, там создается отель. Даже сейчас, когда туристический билет на МКС стоит более 20 млн долл., туда стоит очередь желающих. И на жалкий суборбитальный прыжок за 200 тыс. - тоже. Думаю, что многие захотят за пару миллионов провести отпуск в орбитальном отеле на огромной космической станции с населением в сотни человек, перепробовать там кучу аттракционов (от спортивных игр в невесомости до выхода в открытый космос), познакомиться с работой различных коммерческих, технологических и научных команд.

Далее строится киностудия для съемок в невесомости. Понятно, что и сейчас в Голливуде умудряются создать впечатление невесомости в различных космических фильмах. Но для таких эффектов есть много ограничений, а сопутствующая компьютерная поддержка стоит дорого. Когда бюджеты фильмов исчисляются сотнями миллионов, может оказаться вполне оправданным за 20 млн отправить на орбиту съемочную команду с актерами.

Не забываем о рекламном потенциале «города на орбите». Компании будут платить за размещение своих логотипов на станции, поставку на нее своих продуктов, съемку там своих рекламных роликов, отправку победителей промо-лотерей. Наверняка появятся и новые неожиданные идеи вроде недавнего предложения устраивать по заказу искусственные метеорные дожди над городами, сбрасывая с орбиты специальные капсулы.

Ремонтный док в космосе

Следующее естественное направление - ремонтный док для спутников. Сейчас большинство спутников строится в расчете на полную автономию. Это заставляет делать все системы сверхнадежными, а значит, дорогими. Ошибки выведения, как правило, делают спутники бесполезными. Страховки покрывают стоимость аппаратов, но не упущенную выгоду. Наконец, многие спутники за время эксплуатации устаревают морально.

Пример телескопа «Хаббл» показывает, что обслуживание спутника может значительно продлить его активную жизнь. Буксир с ионным двигателем может приводить в док для обслуживания спутники, выведенные на нерасчетные орбиты, вышедшие из строя, нуждающиеся в модернизации или дозаправке. Кстати, работа многих комических обсерваторий ограничена запасами жидкого гелия на борту. В доке их можно было бы пополнять.

Развитием идеи ремонтного дока будет строительная верфь для крупных спутников и космических кораблей. Сейчас сложность исследовательских спутников и межпланетных станций ограничивается грузоподъемностью и габаритами ракет-носителей. А также тем, что космический аппарат должен безупречно работать сразу после стрессовых условий ракетного старта.

При снижении стоимости выведения и наличии орбитальной сборочной верфи многие ограничения на конструкцию крупных космических аппаратов были бы сняты. Также перестали бы быть столь проблематичными вопросы пилотируемых полетов к другим планетам. В частности, удалось бы снять самую трудную проблему радиационной безопасности экипажа, поскольку масса радиационной защиты больше не была бы сдерживающим фактором.

Исследовательская база в космосе

Следующий шаг - создание космической базы для систематического сбора, доставки и изучения образцов с различных тел Солнечной системы. Нет необходимости при полете за каждым таким образцом сначала выбираться из гравитационно-атмосферного колодца Земли, а потом возвращаться в него. Зонды с ионными двигателями могут стартовать прямо с космической станции и возвращаться на нее. На ней же может проводиться весь цикл исследований, за исключением самых экзотических.

Что касается исследований, то, полагаю, основной упор должен быть сделан на медицину и биологию в условиях нулевой или пониженной гравитации. Также не исключено появление новых материалов, которые оправданно производить в условиях невесомости.

Космический город

И наконец, не будем забывать, что человеческие поселения существуют не только для того, чтобы что-то куда-то поставлять. В них еще просто живут люди, которые занимаются самыми разными делами. Вполне естественно, что по мере роста космической базы часть людей станет просто ее жителями. Вероятно, поначалу жить там будет дорого и это смогут позволить себе лишь очень состоятельные люди. Но ведь их кто-то должен будет обслуживать. И цены этого обслуживания будут учитывать «орбитальную наценку». Так что все эти люди сформируют свой рынок.

Наконец, пойдут исследования по оптимизации жизни на самой орбитальной станции. Скажем, может оказаться, что снабжать станцию кислородом выгоднее не с Земли, а с Луны - в составе реголита. И из него же можно добывать алюминий для собственных конструкционных нужд.

Короче, если численность населения станет достаточно большой, на станции не сразу, но постепенно запустится своя экономика, и проект начнет сам искать себе заработок - туризм, реклама, эксклюзивные апартаменты, обслуживание космической техники, эксперименты, съемки и развлечения в невесомости и в открытом космическом пространстве. В общем, нормальная человеческая жизнь. Только для ее запуска нужно, чтобы стоимость выведения на орбиту снизилась на порядок, а лучше на два. А вот что нужно для этого, пока еще до конца не ясно.

Необходимо менять стратегию

Владимир Сурдин :

Рождение пилотируемой космонавтики в 1960-е было естественным этапом технического прогресса. В нем были заинтересованы все - инженеры, врачи, идеологи. Появление человека на околоземной орбите и далее на Луне сильно изменило мировоззрение просвещенной части землян, стимулировало прогресс науки.

Но в последние десятилетия в пилотируемой космонавтике застой. Ее развитие практически остановилось в середине 1980-х. Стало ясно, что на околоземной орбите человеку опасно оставаться более года, а вдали от Земли - более полугода. Что все оборонные и хозяйственные задачи (мониторинг Земли, связь, навигация и проч.) эффективнее решаются беспилотными аппаратами. Человек в космосе остается элементом государственного престижа, но с годами эффективность и этой его роли снижается.

Сейчас космонавты присутствуют только на МКС и в основном занимаются поддержанием работоспособности станции. Надежды на разработку новых технологий в невесомости (идеальные кристаллы, чистые лекарства), очевидно, не оправдываются. Научные эксперименты на МКС проводятся. Но если не принимать во внимание меркантильные соображения (т. е. финансирование), то ученые не горят желанием размещать свои приборы на МКС, предпочитая непилотируемые аппараты. Отправляя научную установку на МКС, ее всё равно приходится делать максимально автоматизированной и снабжать дополнительными устройствами, нейтрализующими вредное влияние (вибрацию и т. п.) космонавтов и систем их жизнеобеспечения.

Насколько я знаю, пилотируемая космонавтика съедает более трети бюджета гражданских космических агентств, не принося сколько-нибудь значительных научных и технических результатов, в отличие от беспилотных орбитальных аппаратов и межпланетных зондов.

Тем не менее по закону Паркинсона штат любого ведомства со временем только возрастает. Чиновники от пилотируемой космонавтики декларируют для нее новые амбициозные цели (полеты к астероидам, к Марсу), не делая в этом направлении реальных шагов. Даже моделируя на Земле длительные полеты (например, «Марс–500»), они не создают условий, по возможности близких к космическим, - я имею в виду радиацию.

Разумеется, было бы недальновидно на основании сказанного запретить пилотируемые полеты и в результате потерять наработанные технологии. Но менять стратегию необходимо. Технологии пребывания человека в космосе уже используются частными фирмами, развивающими космический туризм, поэтому они не пропадут. А государственные деньги желательно тратить на решение фундаментальных задач.

Предыдущее поколение людей вошло в историю цивилизации первыми шагами в космос. А чем ответит нынешнее поколение? Если переориентировать приоритеты большой космонавтики на создание новых межпланетных зондов и космических телескопов, то наше поколение могло бы стать первым обнаружившим жизнь вне Земли. По-моему, это достойная задача, решив которую мы откроем новые перспективы для человечества.

Александр Сергеев :

Я полностью согласен, что при неизменности технологий выведения на орбиту обозначенная Владимиром Георгиевичем смена стратегии оправданна и даже необходима. Однако мне была интересна ситуация, когда стоимость выведения удастся радикально снизить. В этом случае можно обеспечить в космосе защиту от радиации (это лишь вопрос массы экранов), избавить экипажи от постоянного воздействия невесомости (за счет закрутки больших станций) и значительно снизить психологические издержки (за счет увеличения численности экипажей и уровня безопасности полетов). Таким образом, радикальной космической экспансии препятствует лишь высокая стоимость вывода на орбиту. Технически осуществимые альтернативы ракетным технологиям уже придуманы. Тому, кто реализует их на практике, будет принадлежать космос. А до тех пор, да, только роботы и космонавты престижа.