Школьная энциклопедия. Как далеко от Земли надо оказаться, чтобы не чувствовать её гравитацию? Как далеко находятся звезды от земли

Многие звёзды гораздо больше Солнца

Лучи света, исходящие от звёзд

Космонавты на орбите

Перед сном я очень люблю смотреть на красоту звёздного неба. Кажется, что там, наверху - царство вечной тишины и покоя. Только руку протяни, и звезда у тебя в кармане. Наши предки полагали, что звёзды могут влиять на нашу судьбу и наше будущее. Но вот на вопрос, что они собой представляют, ответит не каждый. Попробуем разобраться.

Звёзды являются основным «населением» галактик. Например, только в нашей галактике их сияет более 200 миллиардов. Каждая звезда - это огромный раскалённый светящийся газовый шар, как наше Солнце. Звезда светит, потому что выделяет колоссальное количество энергии. Эта энергия образуется в результате ядерных реакций при очень высоких температурах.

Многие из звёзд гораздо больше Солнца. А наша Земля - пылинка по сравнению с Солнцем! Представь себе, что Солнце - это футбольный мяч, а наша планета Земля по сравнению с ним маленькая, как булавочная головка! Почему же мы видим Солнце таким небольшим? Всё просто - потому что оно находится очень далеко от нас. А звёзды выглядят очень маленькими, потому что находятся
ещё гораздо-гораздо дальше. Например, луч света летит быстрее всего на свете. Он может облететь вокруг всей Земли раньше, чем ты успеешь моргнуть глазом. Так вот, Солнце так далеко, что его луч летит до нас 8 минут. А лучи от других самых близких звёзд летят к нам целых 4 года! Свет от самых дальних звёзд летит к Земле миллионы лет! Теперь становится понятно, как далеки от нас звёзды.

Но если звёзды - это Солнца, то почему они светят так слабо? Чем дальше звезда, тем шире расходятся её лучи, и свет рассеивается по всему небу. И доходит до нас только крошечная порция этих лучей.

Хотя звёзды рассыпаны по всему небосводу, мы видим их только ночью, а днём на фоне яркого рассеянного в воздухе солнечного света они не видны. Мы живём на поверхности планеты Земля и находимся как будто на дне воздушного океана, который постоянно волнуется и бурлит, преломляя лучи света звёзд. Из-за этого они кажутся нам мигающими и дрожащими. Но космонавты на орбите видят звёзды, как цветные немигающие точки.

Мир этих небесных тел очень разнообразен. Бывают звёзды-гиганты и сверхгиганты. Например, диаметр звезды Альфа в 200 тысяч раз больше, чем диаметр Солнца. Свет этой звезды проходит расстояние до Земли за 1200 лет. Если бы можно было облететь на самолете экватор гиганта, то для этого потребовалось бы 80 тысяч лет. Существуют и звёзды-карлики, которые значительно уступают по своим размерам Солнцу и даже Земле. Вещество таких звёзд отличается необыкновенной плотностью. Так, один литр вещества «белого карлика» Койпера весит около 36 тысяч тонн. Спичка, сделанная из такого вещества, весила бы около 6 тонн.

Присмотрись к звёздам. И ты увидишь, что не все они одинакового цвета. Цвет звезды зависит от температуры на их поверхности - от нескольких тысяч до десятков тысяч градусов. Звёзды красного цвета считаются «холодными». Их температура «всего» около 3-4 тысяч градусов. Температура поверхности Солнца, которое жёлто-зелёного цвета, достигает 6 тысяч градусов. Белые и голубоватые звёзды - самые горячие, их температура превосходит 10-12 тысяч градусов.

Это интересно:

иногда можно наблюдать, как с неба падают звёзды. Говорят, что когда видишь падающую звезду, надо загадать желание, и оно обязательно исполнится. Но то, что мы принимаем за падающие звёзды, - это всего-навсего маленькие камни, летящие из космического пространства. Подлетая к нашей планете, такой камень сталкивается с воздушной оболочкой и при этом так сильно раскаляется, что начинает светиться, как звёздочка. Вскоре «звёздочка», не долетев до Земли, сгорает и гаснет. Эти «космические пришельцы» называются метеорами. Если часть метеора достигает поверхности, то её называют метеоритом.

В некоторые дни года метеоры появляются на небе гораздо чаще, чем обычно. Это явление называют метеорным потоком или говорят, что идёт «звёздный дождь».

Древние считали, что все звезды находятся на одинаковом расстоянии от Земли, прикрепленные к хрустальной сфере. В античные времена Земля считалась неподвижным центром Вселенной, вокруг которого вращались Солнце, Луна, планеты и звезды. Природа небесных тел в то время была неизвестна, и лишь очень немногие философы полагали, что звезды являются, по сути, далекими солнцами.


Это представление стало распространяться только после появления учения Коперника в XVI веке. Чтобы объяснить неравномерности в движении планет по небу, Коперник предположил, что в центре Вселенной находится не Земля, но Солнце, вокруг которого вращались планеты. Земля, лишившись статуса центра, стала всего лишь одной из планет: теперь она не покоилась неподвижно, но обращалась вокруг Солнца по орбите. Тогда у некоторых ученых появилась идея измерить расстояния до звезд. Метод, который они предложили, называется методом годичного параллакса.

Идея была проста и заключалась в следующем. Если постоянно измерять положение звезды на небе, то можно заметить, как звезда описывает в пространстве крохотные эллипсы с периодом в 1 год. Смещение звезды должно происходить из-за движения Земли по орбите вокруг Солнца, и величина его будет тем больше, чем ближе к нам располагается звезда. Зная величину угла смещения или, иначе, параллакс звезды, можно без труда найти расстояние до нее по формуле D=a/sin(p), где a – большая полуось земной орбиты, а p – величина параллакса, измеряемая в секундах дуги.

Несмотря на простоту метода, ученым долгое время не удавалось обнаружить у звезд параллаксы. Некоторые считали это доказательством ошибочности теории Коперника, но большинство полагало, что звезды просто очень далеки от нас, чтобы надеяться определить их параллакс.

Только в XIX веке с появлением нового поколения телескопов, позволявших измерять очень малые углы, ученые смогли надежно определить расстояния до некоторых звезд. Первым параллакс измерил великий русский астроном, первый директор Пулковской обсерватории, Василий Яковлевич Струве в 1837 году. Наблюдая звезду Вегу, он нашел, что ее параллакс равен 0”,125. Это совершенно ничтожный угол. Достаточно сказать, что под таким углом будет виден невооруженному глазу человек с расстояния в 3000 километров!

Теперь можно было вычислить и расстояние до этой звезды. Если расстояние от Земли до Солнца (а) принять за 1, то D=1/sin(0”,125), что равно 1650000. Эта цифра показывает, во сколько раз Вега дальше от Земли, чем Солнце. Такие колоссальные расстояния неудобно измерять в километрах, поэтому астрономы пользуются парсеками. Парсек – это расстояние, с которого большая полуось земной орбиты, перпендикулярная к лучу зрения, видна под углом в 1". Расстояние в парсеках равно обратной величине параллакса. Так как параллакс Веги составляет всего лишь 1/8 угловой секунды, то расстояние до звезды равно 8 парсекам.

Это очень большая величина. Свет, двигаясь со скоростью 300000 км/с, преодолеет это расстояние за 26 лет. Это значит, что наблюдаемый нами свет Веги был испущен звездой 26 лет назад!

На сегодняшний день ученым известны параллаксы более сотни тысяч звезд. Метод годичных параллаксов позволил астрономам определить точные расстояния до звезд в радиусе примерно сотни парсек или 320 световых лет от Солнца. Расстояния до более далеких звезд определяются другими, косвенными методами. Но в их основании находится все тот же метод годичного параллакса.

Определение расстояния в астрономии зависит обычно от того, насколько далеко находится небесное тело. Некоторые методы можно применять лишь для относительно близких объектов, например, соседних с нами планет. Другие - для более удаленных, таких как звёзды или даже галактики. Однако эти способы, как правило, менее точны.

Как определить расстояние до объекта в космосе

Способ определения расстояния до соседних планет

В Солнечной системе это относительно просто: движение планет здесь рассчитывается по законам Кеплера, и можно вычислить удаленность близлежащих планет и астероидов с помощью радиолокационных измерений. Таким путём устанавливать расстояние весьма легко.

Внутри Солнечной системы действуют законы Кеплера

Как измеряют расстояние до звезд

Для относительно близких к нам звезд можно определять так называемый параллакс. При этом необходимо наблюдать, как изменяется положение звезды в результате обращения Земли вокруг нашего светила относительно звезд, гораздо более удаленных от нас. В зависимости от точности измерения возможно довольно точное и прямое определение расстояние.

Вычисление расстояний по параллаксу звезд

Если это не подходит, можно попытаться определить тип звезды по спектру, чтобы по истинной яркости сделать вывод об удаленности. Это уже косвенный метод, так как нужно делать о звезде определенные предположения.

Измерение расстояний по спектру звезд

Если невозможно применить и этот метод, то ученые пытаются обойтись"шкалой расстояний". При этом ищут звезды, яркость которых точно известна по наблюдениям в нашей Галактике. Такие объекты называются "стандартные свечи". Ими служат, например, звезды-цефеиды, чьи яркость периодически изменяется. Согласно теории, скорость этих изменений зависит от максимальной яркости звезды.

Вычисление расстояний по цефеидам

Если такие цефеиды обнаруживают в другой галактике и можно наблюдать, как меняется яркость звезды, то определяется её максимальная яркость, а затем расстояние от нас. Другим примером стандартной свечи служит определенный вид взрыва сверхновой, у которой, как считают астрономы, всегда одинаковая максимальная яркость.

Стандартной свечой может быть взрыв сверхновой

Тем не менее, даже этот метод имеет свои ограничения. Тогда астрономы используют красное смещение в спектрах галактик.

Увеличение длины волны света, исходящего из галактики, придает ему на спектре более красный цвет, названный красным смещением

Исходя из него, может быть рассчитана скорость удаления галактики, которая непосредственно связана - согласно закону Хаббла - с расстоянием до этой галактики от Земли.

". Очень интересная и познавательная информация о том, каким образом можно определить расстояние до объекта на местности пользуясь только собственным глазомером. Всего описывается несколько способов определения расстояний на местности, но для нашей темы измерения расстояний до звезд нам важен всего лишь один из выводов, который гласит, что при удалении предмета в N раз дальше, чем он был от нас, он зрительно уменьшается в N раз; и наоборот, во сколько раз приблизим предмет, во столько раз он зрительно увеличится. Т.е. если взять предмет, измерить его физическую длину (пусть это будет палка длиной 1м), измерить расстояние до этого объекта (пусть будет 0,1 м), потом удалить этот объект на расстояние 4 м от того места, где он находился, то зрительно он станет меньше в 4 раза! Все очень просто. Зная эту зависимость, на местности можно довольно точно определять расстояния до объекта, правда, нужно знать его актуальный размер. Но это не проблема, если речь идет об автомобиле или подобном хорошо знакомом предмете.

Теперь мы, зная эту простую обратную зависимость расстояния и величины объекта , попробуем замахнуться на “основы основ” и посчитать примерное расстояние до ближайших звезд.

Скептики сразу скажут, что эти оптические законы могут не работать на космических расстояниях, поэтому сначала начнем с проверки известных фактов: Солнце больше Луны - в 400 раз. Расстояние от Земли до Солнца также хорошо известно - около 150 млн км. Т.к. у нас на небосклоне Солнце и Луна зрительно одинаковы (это прекрасно заметно при полном солнечном или лунном затмении), то получается, что Луна должна быть ближе к нам, чем Солнце в 400 раз. И это также подтверждается! Яндекс нам в помощь: от Земли до Луны 384 467 км! Проверим, работает ли формула зависимости, для этого 150 млн км разделим на 384467 и получим 390 раз! Т.е. получается, что небесная механика абсолютно точно работает и прекрасно соблюдается оптический закон обратной зависимости видимого размера объекта от расстояния.

Теперь нам нужно найти достойный объект для изучения. Конечно, это будет наше Солнце. Во-первых, мы знаем расстояние до Солнца. Во-вторых, как нам говорят ученые, наше Солнце является всего лишь “заурядным” желтым карликом и подобных звезд класса G2 на небосклоне огромное количество - примерно 10% от всех звезд. и .

Теперь самое важное: получается, что если у нас на небосклоне есть звезды (а они там есть), которые, как утверждают ученые примерно равны размерам нашего Солнца - сейчас отбросим условности, точные параметры нам не так важны, важно то, что звезда по своим размерам примерно такая же как Солнце - т.е. если мы будем знать, во сколько раз Солнце зрительно больше этой звезды, мы сможем посчитать реальное расстояние до этой звезды! Все просто! Полная аналогия с Луной и Солнцем.

Теперь берем звезду, которая имеет (по уверениям ученых) очень близкие параметры к нашему Солнцу: например, 18 Скорпиона ( 18 Scorpii ) - одиночная в созвездии , которая находится на расстоянии около 45,7 от Земли. Объект примечателен тем, что по своим характеристикам он очень похож на .

Итак, “По звезда относится к категории и является «двойником» : масса - 1,01 массы Солнца, радиус - 1,02 радиуса Солнца, светимость - 1,05 светимости Солнца”...

Поясню, эта звезду 18 Скорпиона можно различить на небосклоне невооруженным взглядом. В любом случае, если ученые смогли описать звезду - видимо по спектру - то и у нас не будет сомнений - эта звезда “двойник” нашего Солнца.

Есть еще много звезд, которые сравнимы по размеру с нашим дневным светилом. Например, Альфа-центавра, Дзета Сетки и т.д. Важно понять главное: на небосклоне есть много видимых звезд, размеры которых по утверждениям астрономов являются близкими к размерам Солнца.

Теперь, собственно, сам мысленный эксперимент:

Мы должны сравнить диск Солнца и диск звезды, которая как мы знаем по размерам является его близким аналогом. Во сколько раз диск Солнца больше звезды, во столько раз звезда дальше, чем солнце (проверено Луной)!

Давайте возьмем день, когда Солнце стоит в зените (это его наше зрительное восприятие) и попытаемся “прикинуть”, во сколько раз солнце будет больше своей "тезки" (которую видно только ночью).

Итак, предположим, что на видимом диске Солнца в зените можно отложить 1000 звездочек (от одного края диска до другого). На самом деле может быть и больше, но предположу, что т.к. Вики утверждает, что абсолютное большинство звезд гораздо меньше Солнца, это значит, что среди ярких ночных светил на ночном небе может быть довольно много “малышей”, а это автоматически уменьшает расстояние до них - например не в 1000 раз, а всего лишь в 100 или еще меньше!

Теперь посчитаем расстояние до звезды. 150 млн* 1000. Получим: 150.000.000.000 км. =150 млрд. км. Теперь давайте посчитаем, сколько потребуется свету, чтобы преодолеть это расстояние. Ведь нам говорят о минимум световых годах!!! Итак, мы знаем, что скорость света - 300000 км/сек. Значит, мы просто поделим 150.000.000.000 км на 300000 км/сек и получим время в секундах: 500000 сек. Это всего лишь 5.787 обычных дней! Т.е. свет от такой звезды до нас будет идти всего лишь несколько дней...

Теперь давайте посчитаем, сколько придется лететь на ракете при скорости, например в 10 км/сек. Ответ будет 15 млрд секунд. Если перевести в года, то это: 475.64 земных года! Конечно, цифра поражает, но это все равно не световой год! Это световая неделя максимум! Т.е. свет звезд, что мы видим на небе, самый что ни на есть "свежий". Иначе мы бы видели черное пустое небо. Но, если мы его видим все-таки в звездах, значит звезды намного ближе. Если же предположить, что на солнце поместится никак не больше сотни звезд вдоль диаметра, то лететь до ближайшей звезды всего лишь около 50 лет!

Оценка информации


Записи на схожие темы

Пренебречь воздействием взрывов сверхновых звезд .Например, о столкновениях Земли...лишь в том, насколько далеко в прошлом произошла последняя...«волосатая» или «лохматая» (звезда ). Между тем, это слово... не ввел…Так какое у нас нынче тысячелетье на...