Клетка универсальная форма организации живой материи. Клетка - основная форма организации живой материи

Читайте также:
  1. III. Формы борьбы и эффективность действий антиглобалистов.
  2. XI. Временное выбытие совершеннолетнего получателя из организации поставщика стационарных услуг
  3. Автономной некоммерчекой организации «Санкт–Петербургский центр дополнительного профессионального образования»
  4. Административные взыскания: понятие, перечень и наложения
  5. Акты официального толкования норм права: понятие, признаки, классификация.
  6. Акты применения норм права: понятие, классификация, эффектив-ность действия. Соотношение нормативно-правовых и правоприменительных актов.
  7. Амнистия: понятие и признаки. Помилование: понятие, правовые последствия, отличие от амнистии.

Отличие живого вещества от неживого

Живое вещество - вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической принадлежности.

Живое вещество биосферы характеризуется большим запасом энергии.

Резкое различие между живым и неживым веществом наблюдается в скорости протекания химических реакций (в живом веществе реакции идут в тысячи, а иногда в миллионы раз быстрее).

Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения - белки, ферменты и др. - устойчивы только в живых организмах.

Произвольное движение, в значительной степени саморегулируемое, является общим признаком всякого живого вещества в биосфере.

Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Известно свыше

2 млн. органических соединений, входящих в состав живого вещества, в то время, как количество природных соединений (минералов) неживого вещества составляет около 2 тыс., т. е. на три порядка меньше.

Живое вещество представлено в биосфере в виде индивидуальных организмов, размеры которых колеблются в огромных пределах. Величина самых мелких вирусов не превышает 20 нм (1 нм = 10-9м), самые крупные животные - киты - достигают 33 м в длину, самое большое растение - секвойя - 100 м в высоту.

Химические свойства живого вещества.

Саморегуляция, самовоспроизведение, высокая скорость протекания хим.реакций, активное и пассивное движение.

Физические свойства живого вещества

Высокая приспособленность, раздражимость, рост, развитие, изменчивость.

Формы организации живого вещества: понятие, разновидности.

Живое вещество – вся совокупность тел живых организмов в биосфере. Оно развивается там, где может существовать жизнь, т.е на пересечении атмосферы, литосферы и гидросферы. В неблагоприятных условиях живое вещество переходит в состояние анабиоза.

В процессе эволюции выработалось 2 основные формы организации живого: клеточная и неклеточная, являющаяся производной жизнедеятельности клеток. Среди неклеточных различают симпластическую, синцитиальную формы организации и межклеточное вещество.

5. Межклеточное вещество (внеклеточный матрикс): понятие, характеристика, пример.

Внеклеточным матриксом называют внеклеточные структуры ткани (интерстициальный матрикс и базальные мембраны). Внеклеточный матрикс составляет основу соединительной ткани, обеспечивает механическую поддержку клеток и транспорт химических веществ. Кроме того, клетки соединительной ткани образуют с веществами матрикса межклеточные контакты (гемидесмосомы, адгезивные контакты и др.), которые могут выполнять сигнальные функции и участвовать в локомоции клеток. Так, в ходе эмбриогенеза многие клетки животных мигрируют, перемещаясь по внеклеточному матриксу, а отдельные его компоненты играют роль меток, определяющих путь миграции.

Основные компоненты внеклеточного матрикса - гликопротеины, протеогликаны и гиалуроновая кислота. Коллаген является превалирующим гликопротеином внеклеточного матрикса у большинства животных. В состав внеклеточного матрикса входит множество других компонентов: белки фибрин, эластин, а также фибронектины, ламинины и нидогены; в состав внеклеточного матрикса костной ткани входят минералы, такие как гидроксиапатит; можно считать внеклеточным матриксом и компоненты жидких соединительных тканей - плазму крови и лимфатическую жидкость.

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

3. Уровни организации живой материи. Методы биологии

Вспомните!

Какие уровни организации живой материи вам известны?

Какие вы знаете методы научных исследований?

Уровни организации живой материи. Окружающий нас мир живых существ – это совокупность биологических систем разной степени сложности, образующих единую иерархическую структуру. Причём следует отчётливо представлять, что взаимосвязь отдельных биологических систем, принадлежащих к одному уровню организации, формирует качественно новую систему. Одна клетка и множество клеток, один организм и группа организмов – разница не только в количестве. Совокупность клеток, обладающих общим строением и функцией, – это качественно новое образование – ткань. Группа организмов – это семья, стая, популяция, т. е. система, обладающая совершенно иными свойствами, нежели простое механическое суммирование свойств нескольких особей.

В процессе эволюции происходило постепенное усложнение организации живой материи. При образовании более сложного уровня предыдущий уровень, возникший ранее, входил в него как составная часть. Именно поэтому уровневая организация и эволюция являются отличительными признаками живой природы. В настоящее время жизнь как особая форма существования материи представлена на нашей планете несколькими уровнями организации (рис. 4).

Молекулярно-генетический уровень. Как бы сложно ни была организована любая живая система, в её основе лежит взаимодействие биологических макромолекул: нуклеиновых кислот, белков, углеводов, а также других органических и неорганических веществ. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: кодирование и передача наследственной информации, обмен веществ, превращение энергии.

Клеточный уровень. Клетка – это структурно-функциональная единица всего живого. Существование клетки лежит в основе размножения, роста и развития живых организмов. Вне клетки жизни нет, а существование вирусов только подтверждает это правило, потому что они могут реализовывать свою наследственную информацию только в клетке.

Рис. 4. Уровни организации живой материи

Тканевый уровень. Ткань – это совокупность клеток и межклеточного вещества, объединённых общностью происхождения, строения и выполняемой функции. В животных организмах выделяют четыре основных типа ткани: эпителиальную, соединительную, мышечную и нервную. В растениях различают образовательные, покровные, проводящие, механические, основные и выделительные (секреторные) ткани.

Органный уровень. Орган – это обособленная часть организма, имеющая определённую форму, строение, расположение и выполняющая конкретную функцию. Орган, как правило, образован несколькими тканями, среди которых одна (две) преобладает.

Организменный (онтогенетический ) уровень. Организм – это целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию. Многоклеточный организм образован, как правило, совокупностью тканей и органов. Существование организма обеспечивается путём поддержания гомеостаза (постоянства структуры, химического состава и физиологических параметров) в процессе взаимодействия с окружающей средой.

Популяционно-видовой уровень. Популяция – совокупность особей одного вида, в течение длительного времени проживающих на определённой территории, внутри которой осуществляется в той или иной степени случайное скрещивание и нет существенных внутренних изоляционных барьеров; она частично или полностью изолирована от других популяций данного вида.

Вид – совокупность особей, сходных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство. Все особи одного вида имеют одинаковый кариотип, сходное поведение и занимают определённый ареал.

На этом уровне осуществляется процесс видообразования, который происходит под действием эволюционных факторов.

Биогеоценотический (экосистемный ) уровень. Биогеоценоз – исторически сложившаяся совокупность организмов разных видов, взаимодействующая со всеми факторами их среды обитания. В биогеоценозах осуществляется круговорот веществ и энергии.

Биосферный (глобальный ) уровень. Биосфера – биологическая система высшего ранга, охватывающая все явления жизни в атмосфере, гидросфере и литосфере. Биосфера объединяет все биогеоценозы (экосистемы) в единый комплекс. В ней происходят все вещественно – энергетические круговороты, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

Таким образом, жизнь на нашей планете представлена саморегулирующимися и самовоспроизводящимися системами различного ранга, открытыми для вещества, энергии и информации. Происходящие в них процессы жизнедеятельности и развития обеспечивают существование и взаимодействие этих систем.

На каждом уровне организации живой материи существуют свои специфические особенности, поэтому в любых биологических исследованиях, как правило, какой-то определённый уровень является ведущим. Так, например, механизмы деления клетки изучают на клеточном уровне, а основные успехи в области генной инженерии достигнуты на молекулярно-генетическом. Но такое разделение проблем по уровням организации является весьма условным, потому что большинство задач биологии так или иначе касаются одновременно нескольких уровней, а порой и всех сразу. Например, проблемы эволюции затрагивают все уровни организации, а методы генной инженерии, реализуемые на молекулярно-генетическом уровне, направлены на изменение свойств всего организма.

Методы познания живой природы. Исследуя системы разной степени сложности, биология использует разнообразные методы и приёмы. Одним из наиболее древних является метод наблюдения , на котором основывается описательный метод . Сбор фактического материала и его описание были основными приёмами исследования на раннем этапе развития биологии. Но и в настоящее время они не утратили своего значения. Эти методы широко используют зоологи, ботаники, микологи, экологи и представители многих других биологических специальностей.

В XVIII в. в биологии стал широко применяться сравнительный метод , который позволял в процессе сопоставления объектов выявлять сходства и различия организмов и их частей. Благодаря этому методу были заложены основы систематики растений и животных, создана клеточная теория. Применение этого метода в анатомии, эмбриологии, палеонтологии способствовало утверждению в биологии эволюционной теории развития.

Исторический метод позволяет сравнить существующие факты с данными, известными ранее, выявить закономерности появления и развития организмов, усложнения их структуры и функций.

Огромное значение для развития биологии имел экспериментальный метод , его первое применение связывают с именем римского врача Галена (II в. н. э.). Гален впервые продемонстрировал участие нервной системы в организации поведения и в работе органов чувств. Однако широко использоваться этот метод начал лишь с XIX в. Классическим образцом применения экспериментального метода являются работы И. М. Сеченова по физиологии нервной деятельности и Г. Менделя по изучению наследования признаков.

В настоящее время биологи всё чаще используют метод моделирования , позволяющий воспроизвести такие экспериментальные условия, которые в реальности воссоздать порой не представляется возможным. С помощью компьютерного моделирования, например, можно рассчитать последствия постройки плотины для определённой экосистемы или воссоздать эволюцию определённого вида живых организмов. Меняя параметры, можно выбрать оптимальный путь развития агроценоза или подобрать наиболее безопасное сочетание лекарственных препаратов при лечении конкретного заболевания.

Любое научное исследование, использующее разные методы, состоит из нескольких этапов. Сначала в результате наблюдений собирают данные – факты , на основе которых выдвигают гипотезу . Для того чтобы оценить верность этой гипотезы, осуществляют серии экспериментов с целью получения новых результатов. Если гипотеза подтверждается, она может стать теорией , включающей в себя определённые правила и законы .

При решении биологических задач используют самую разнообразную технику: световые и электронные микроскопы, центрифуги, химические анализаторы, термостаты, компьютеры и множество других современных приборов и инструментов.

Настоящую революцию в биологических исследованиях произвело появление электронного микроскопа, в котором вместо светового пучка используют пучок электронов. Разрешающая способность такого микроскопа в 100 раз выше, чем светового.

Одним из видов электронного микроскопа является сканирующий. В нём электронный луч не проходит через образец, а отражается от него и преобразуется в изображение на телеэкране. Это позволяет получать трёхмерное изображение исследуемого объекта.

Вопросы для повторения и задания

1. Как вы считаете, почему необходимо выделять различные уровни организации живой материи?

2. Перечислите и охарактеризуйте уровни организации живой материи.

3. Назовите биологические макромолекулы, входящие в состав живых систем.

4. Как проявляются свойства живого на различных уровнях организации?

5. Какие методы исследования живой материи вы знаете?

6. Может ли многоклеточный организм не иметь тканей и органов? Если вы считаете, что может, приведите примеры таких организмов.

Рис. 5. Амёба под микроскопом

Подумайте! Выполните!

1. Выделите основные признаки понятия «биологическая система».

2. Согласны ли вы с тем, что описательный период в биологии продолжается и в XXI в.? Ответ обоснуйте.

3. Рассмотрите рис. 5. Определите, какое изображение было получено при помощи световой микроскопии, какое – при помощи электронной, а какое – результат использования сканирующего микроскопа. Объясните свой выбор.

4. Из предыдущих курсов биологии, физики, химии или других предметов вспомните какую-нибудь хорошо известную вам теорию (закон или правило). Попробуйте описать основные этапы её (его) формирования.

5. Используя дополнительную литературу и ресурсы Интернета, подготовьте презентацию или красочный стенд на тему «Современное научное оборудование и его роль в решении биологических задач». С каким оборудованием вы уже познакомились при изучении курса «Человек и его здоровье»? Для каких целей его используют? Можно ли медицинское оборудование считать биологическим? Объясните свою точку зрения.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Повторите и вспомните!

Растения

Появление тканей и органов растений. Появление тканей и органов в эволюции растений было связано с выходом на сушу. У водорослей отсутствуют органы и специализированные ткани, так как все их клетки находятся в одинаковых условиях (температурный режим, освещённость, минеральное питание, газообмен). Каждая клетка водоросли обычно содержит хлоропласты и способна к фотосинтезу.

Однако, выйдя на сушу, предки современных высших растений попали в совершенно иные условия: кислород, необходимый для дыхания, и углекислый газ, используемый для фотосинтеза, растения должны были получать из воздуха, а воду – из почвы. Новая среда обитания не была однородной. Возникли проблемы, которые надо было решать: защита от высыхания, поглощение воды из почвы, создание механической опоры, сохранение спор. Существование растений на границе двух сред – почвы и воздуха – привело к возникновению полярности: нижняя часть растения, погружаясь в почву, поглощала воду с растворёнными в ней минеральными веществами, верхняя часть, оставаясь на поверхности, активно фотосинтезировала и обеспечивала всё растение органическими веществами. Так появились два основных вегетативных органа современных высших растений – корень и побег.

Такое расчленение тела растений на отдельные органы, усложнение их структуры и функций происходило постепенно в процессе длительной эволюции растительного мира и сопровождалось усложнением тканевой организации.

Первой появилась покровная ткань, обеспечившая защиту растения от высыхания и повреждений. Подземная и наземная части растения должны были иметь возможность обмениваться различными веществами. Вода с растворёнными в ней минеральными солями поднималась вверх из почвы, а органические вещества перемещались вниз, к подземным частям растения, не способным к фотосинтезу. Это требовало развития проводящих тканей – ксилемы и флоэмы. В воздушной среде надо было противостоять силам гравитации, выдерживать порывы ветра – это потребовало развития механической ткани.

У высших растений различают вегетативные и генеративные (репродуктивные) органы. Вегетативными органами высших растений являются корень и побег, состоящий из стебля, листьев и почек. Вегетативные органы обеспечивают фотосинтез и дыхание, рост и развитие, поглощение и проведение в теле растения воды и растворённых в ней минеральных солей, транспорт органических веществ, а также участвуют в вегетативном размножении.

Генеративные органы – это спорангии, спороносные колоски, шишки и цветки, образующие плоды и семена. Они появляются в определённые периоды жизни и выполняют функции, связанные с размножением растений.

Человек

Методы изучения человека. Одним из первых анатомических методов, начиная с эпохи Возрождения, был метод аутопсии (вскрытия трупов). Однако в настоящее время существует множество методов, которые позволяют изучать организм прижизненно: рентгеноскопия, ультразвуковое исследование, магнитно-резонансная томография и многие другие.

Основу всех физиологических методов составляют наблюдения и эксперименты . Современные физиологи успешно применяют разнообразные инструментальные методы. Электрокардиограмма сердца, электроэнцефалограмма головного мозга, термография (получение теплофотографий), радиография (введение в организм радиометки), разнообразные эндоскопии (осмотры внутренних органов при помощи специальных приборов – эндоскопов) помогают специалистам не только изучать работу организма, но и на ранних стадиях выявлять заболевания и нарушения в работе органов. Многое о состоянии здоровья человека может сказать его артериальное давление, анализ крови и мочи.

Основными методами психологии являются наблюдения, анкетирование, эксперимент .

Гигиена, наряду с методами, используемыми в других науках, имеет свои специфические методы исследования: эпидемиологический, санитарного обследования, санитарной экспертизы, санитарного просвещения и некоторые другие.

Ваша будущая профессия

1. Оцените роль науки в жизни каждого человека и общества в целом. Напишите эссе по данной теме. Обсудите в классе, существует ли в настоящее время профессиональная деятельность, на которую не влияет развитие науки.

2. Оцените значение информации в современном обществе. Какова роль информации в успешном профессиональном росте? Раскройте смысл высказывания премьер-министра Великобритании Уинстона Черчилля (1874–1965) «Кто владеет информацией – тот владеет миром».

3. Попробуйте смоделировать ситуации, в которых вам могут пригодиться знания, полученные при изучении этой главы.

4. Специальность – комплекс приобретённых путём специальной подготовки и опыта работы знаний, умений и навыков, необходимых для определённого вида деятельности в рамках той или иной профессии. Профессия – социально значимый род занятий человека, вид его деятельности. Определите, что из ниже приведённого списка относится к специальности, а что – к профессии: биология, инженер-эколог, биотехнолог, экология, генный инженер, молекулярный биолог. Аргументируйте свой выбор.

5. Какую специальность вы планируете приобрести в ходе дальнейшего обучения? Определились ли вы уже с выбором профессии?

Из книги Занимательная ботаника [С прозрачными иллюстрациями] автора

Живой якорь

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Тайны мира насекомых автора Гребенников Виктор Степанович

Из книги Путешествие в страну микробов автора Бетина Владимир

Живой мешок Но, как обычно, из всех правил бывают исключения. На моем лабораторном столе произошло нечто противоестественное, не укладывающееся, по моим понятиям, ни в какие биологические рамки. Из желтоватого шелкового кокона, сплетенного гусеницей, которую я нашел в

Из книги Муравей-путешественник автора Мариковский Павел Иустинович

Живой дым Пожалуй, я не припомню ни одной энтомологической экскурсии, во время которой не увидел бы чего-нибудь интересного. А иногда выдаются особенно счастливые дни. В такой день природа будто специально для тебя приподнимает занавес, поверяя свои сокровенные тайны и

Из книги Мир животных. Том 2 [Рассказы о зверях крылатых, бронированных, ластоногих, трубкозубых, зайцеобразных, китообразных и человекообразных] автора Акимушкин Игорь Иванович

Живой свет Еще Аристотель в IV веке до н. э. писал, что «некоторые тела способны светиться во тьме, например грибы, мясо, головы и глаза рыб».Светящиеся бактерии излучают зеленый или голубоватый свет, хорошо заметный в темноте. Свечение это возможно лишь в присутствии

Из книги Мир животных. Том 3 [Рассказы о птицах] автора Акимушкин Игорь Иванович

Муравейник в живой ели Когда-то очень давно - может быть, более полувека назад - на здоровой елке сделали топором большую затеску. Возможно, это был какой-то условный знак жителей гор или обозначение границы между различными владениями. Дерево залечило рану смолой, и

Из книги Занимательная ботаника автора Цингер Александр Васильевич

Живой предок «Мы думаем, однако, что можно согласиться с тем, что загадочные тупайи действительно представляют живую модель того раннего предка, который когда-то сделал первые шаги от насекомоядных к приматам и, значит, принадлежит к ряду наших предков» (доктор Курт

Из книги Дарвинизм в XX веке автора Медников Борис Михайлович

Живой невод Нужно ли представлять пеликана? Его странную фигуру все хорошо знают. Кто не видел, может полюбоваться в зоопарке. Давно поразил пеликан воображение впечатлительных людей. В легендах, в мифологии и религии оставил он свой след. У магометан пеликан – священная

Из книги Энергия жизни [От искры до фотосинтеза] автора Азимов Айзек

Живой якорь Чилим Однажды в студенческие годы зашел я к своему товарищу, впоследствии близкому моему приятелю. Разговор зашел о гимназических воспоминаниях.- Вы в какой гимназии учились? - спросил я Р.- Я - в Астраханской, - отвечал он. - Я чистокровный

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 13. И СНОВА О ЖИВОЙ И НЕЖИВОЙ МАТЕРИИ Все открытия и выводы о сохранении энергии и возрастании энтропии, о свободной энергии и катализе были получены на основе изучения неодушевленного мира. Всю первую половину книги я описывал и объяснял эти механизмы лишь для того,

Материи - это условное обозначение, принятое для классификации всех живых организмов на нашей планете. Живая природа Земли поистине разнообразна. Организмы могут принимать различные размеры: начиная от простейших и одноклеточных микробов, переходя к многоклеточным существам, и заканчивая самыми крупными животными на земле - китами.

Эволюция на Земле происходила таким образом, что организмы развивались от простейших (в прямом смысле) к более сложным. Так, то возникая, то исчезая, новые виды совершенствовались в ходе эволюции, принимая все более причудливый облик.

Чтобы систематизировать это невероятное количество живых организмов, и были введены уровни организации живой материи. Дело в том, что, несмотря на различия во внешнем виде и в строении, все организмы живой природы имеют общие черты: они так или иначе состоят из молекул, имеют в своем составе повторяющиеся элементы, в том или ином смысле - общие функции органов; они питаются, размножаются, стареют и умирают. Иными словами, свойства живого организма, несмотря на внешние различия, схожи. Собственно, ориентируясь на эти данные, можно проследить, как проходила эволюция на нашей планете.

2. Надмолекулярный или субклеточный. Уровень, на котором происходит структуризация молекул в органоиды клетки: хромосомы, вакуоли, ядро и т. д.

3. Клеточный. На этом уровне материя представлена в виде элементарной функциональной единицы - клетки.

4. Органно-тканевый уровень. Именно на этом уровне образуются все органы и ткани живого организма вне зависимости от их сложности: головной мозг, язык, почка и др. При этом следует иметь в виду, что ткань - совокупность клеток, объединенных общим строением и функцией. Орган - часть организма, в «обязанности» которой входит выполнение четко определенной функции.

5. Онтогенетический или организменный уровень. На этом уровне различные по функциональности органы объединяются в целостный организм. Говоря иначе, этот уровень представлен уже целостным индивидом любого вида.

6. Популяционно-видовой. Организмы или индивиды, имеющие сходное строение, функции и схожий облик и тем самым относящиеся к одному виду, включаются в одну популяцию. В биологии под популяцией понимают совокупность всех особей данного вида. В свою очередь, все они образуют генетически единую и обособленную систему. Популяция обитает в определенном месте - ареале и, как правило, не пересекается с представителями других видов. Вид, в свою очередь, представляет собой совокупность всех популяций. Живые организмы могут скрещиваться и производить потомство лишь в рамках своего вида.

7. Биоценотический. Уровень, на котором живые организмы объединяются в биоценозы - совокупность всех популяций, проживающих на конкретной территории. Принадлежность к тому или иному виду в этом случае не имеет значения.

8. Биогеоценотический. Этот уровень обусловлен образованием биогеоценозов, то есть совокупности биоценоза и неживых факторов (почва, климатические условия) в той области, где биоценоз обитает.

9. Биосферный. Уровень, объединяющий все живые организмы на планете.

Таким образом, уровни организации живой материи включают в себя девять пунктов. Подобная классификация определяет существующую в современной науке систематизацию живых организмов.

1.Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).

2.Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).

3.Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды - гомеостаза.

4.Обмен веществ и энергии . Живые организмы - открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды - гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций.

5.Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.

6.Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.

7.Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.

8.Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития - онтогенеза. Наопределенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул, клеток и других биологических структур. Рост сопровождается развитием.

9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.


3. Проявления жизни на нашей планете чрезвычайно многообразны. В связи с этим выделяют различные уровни организации живой материи, которые отражают соподчиненность, иерархичность структурной организации жизни. В основе представлений об уровнях организации лежит принцип дискретности.

Молекулярный уровень. Элементарными единицами этого уровня организации жизни являются химические вещества: нуклеиновые кислоты, белки, углеводы, липиды и др. На этом уровне в основном проявляются такие важнейшие процыццессы жизнедеятельности, как передача наследственной информации, биосинтез, превращение энергии и др. Основная стратегия жизни на молекулярном уровне - способность создавать живое вещество и кодировать информацию, приобретенную в меняющихся условиях среды.

На клеточном уровне организации структурными элементами выступают различные органеллы. Способность к воспроизведению себе подобных, включение различных химических элементов Земли в состав клетки, регуляция химических реакций, запасание и потребление энергии - основные процессы этого уровня. Стратегия жизни на клеточном уровне - вовлечение химических элементов Земли и энергии Солнца в живые системы.

Организменный уровень организации присущ одноклеточным и многоклеточным биосистемам (растениям, грибам, животным, в том числе человеку и разнообразным микроорганизмам). У живых организмов проявляются такие свойства, как питание, дыхание, выделение, раздражимость, рост и развитие, размножение, поведение, продолжительность жизни, взаимоотношения с окружающей средой. Все перечисленные процессы в совокупности характеризуют организм как целостную саморегулирующуюся биосистему. Основная стратегия жизни на этом уровне - ориентация организма (особи) на выживание в постоянно меняющихся условиях среды.

Популяционно-видовой уровень организации характеризуется объединением родственных особей в популяции, а популяций - в виды, что приводит к возникновению новых свойств системы. Основные свойства этого уровня: рождаемость, смертность, выживание, структура (половая, возрастная, экологическая), плотность, численность, функционирование в природе. Основная стратегия популяционно-видового уровня проявляется в более полном использовании возможностей среды обитания, в стремлении к возможно более длительному существованию, в сохранении свойств вида и самостоятельном развитии.

На биогеоценотическом (экосистемном) уровне организации основными структурными элементами являются популяции разных видов. Данный уровень характеризуется множеством свойств. К ним относятся: структура экосистемы, видовой и количественный состав ее населения, типы биотических связей, пищевые цепи и сети, трофические уровни, продуктивность, энергетика, устойчивость и др. Организующие свойства проявляются в круговороте веществ и потоке энергии, саморегулировании и устойчивости, автономности, открытости системы, сезонных изменениях. Основная стратегия этого уровня - активное использование всего многообразия окружающей среды и создание благоприятных условий развития и процветания жизни во всем ее многообразии.

Самым высоким уровнем организации жизни является биосферный . Основными структурными единицами этого уровня являются биогеоценозы (экосистемы) и окружающая их среда, т.е. географическая оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация и др.) и антропогенное воздействие. Для этого уровня орган и организации характерны: активное взаимодействие живого и неживого вещества планеты; биологический круговорот веществ и потоки энергии с входящими в него геохимическими циклами; хозяйственная и этнокультурная деятельность человека. Основная стратегия жизни на биосферном уровне - стремление обеспечить динамичную устойчивость биосферы как самой большой экосистемы нашей планеты.

клеточный ; биология клетки (цитология) - один из осн. разделов совр.биологии, включает проблемы морфологич. организаций клетки, специализации клеток в ходе развития,функций клеточной мембраны, механизмов и регуляции деления клетки. Эти проблемы имеют особенноважное значение для медицины, в частности, составляя основу проблемы рака.

На организменном уровне изучают особь и свойственные ей как целому чертыстроения, физиол. процессы, в т. ч. дифференцировку, механизмы адаптации (акклимации) и поведения, вчастности - нейрогумоарльные механизмы регуляции, функции ЦНС. На органотканевом уровне осн.проблемы заключаются в изучении особенностей строения и функций отд. органов и составляющих ихтканей

Клетка – основная форма организации живой материи, ее элементарная единица. По мнению ученых, первые клетки появились на Земле приблизительно 3,5 млрд лет назад в результате спонтанного объединения молекул белков, нуклеиновых кислот и некоторых других веществ, формирования вокруг этих молекул оболочки. Вне клетки нет жизни. Все организмы, обитающие на Земле, за исключением вирусов, имеют клеточное строение. Но и вирусы проявляют свойства живого, только проникнув в живую клетку.

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.
Клетки всех типов содержат два основных компонента, тесно связанных между собой, - цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования - включения. Мембранные органоиды : наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоле.
У многих растительных и животных клеток имеются органоиды специального назначения : реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.).
Включения - временные элемеаты, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках-крахмал, капельки жира, блки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках - гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы - в виде кристаллов, пигментов и др.
Вакуоли - это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза - растворимые углеводы, белки, пектины и др. - накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.
Цитоскелет . Одной из отличительных особенностей эукариотической клетки является развитие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элемеиты цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.
Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.
Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин - спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп.

Биологически активные вещества - гормоны, ферменты, адреналин, серотонин и т. д. В медицинской практике гормональные препараты используют для лечения заболеваний желез внутренней секреции, при которых функция последних понижена. Так, например, инсулин применяют для лечения сахарной болезни (диабет).

Помимо лечения заболеваний желез внутренней секреции гормоны и гормональные препараты применяются также и при других болезнях: инсулин – при патологическом истощении, заболеваниях печени, шизофрении; тиреоидин – при некоторых формах ожирения; мужской половой гормон (тестостерон) – при раке молочной железы у женщин, женский половой гормон (или синэстрол и стильбестрол) – при гипертрофии и раке предстательной железы у мужчин и др.

Основная часть поверхностного аппарата клетки – плазматическая мембрана. Плазматическая мембрана, или плазмапемма, ограничивает клетку снаружи, выполняя роль механического барьера. Через нее происходит транспорт веществ внутрь клетки и наружу. Мембрана обладает свойством полу проницаемости. Молекулы проходят через нее с различной скоростью; чем больше размер молекул, тем меньше скорость прохождения их через мембрану.
На внешней поверхности плазматической мембраны в животной клетке белковые и липидные молекулы связаны с углеводными цепями, образуя гликокаликс. Углеводные цепи выполняют роль рецепторов. Благодаря им осуществляется межклеточное узнавание. Клетка приобретает способность специфически реагировать на воздействия извне.
Под плазматической мембраной со стороны цитоплазмы имеются кортикальный слой и внутриклеточные фибриллярные структуры, обеспечивающие механическую устойчивость плазматической мембраны.

Билет 8


Похожая информация.